High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply the polynomials:

[tex]\[ \left(4x^2 + 3x + 7\right)(8x - 5) \][/tex]

A. [tex]\[ 32x^3 + 4x^2 + 41x - 35 \][/tex]
B. [tex]\[ 32x^3 - 44x^2 - 71x - 35 \][/tex]
C. [tex]\[ 32x^3 - 4x^2 - 41x + 35 \][/tex]
D. [tex]\[ 32x^3 + 4x^2 + 41x + 35 \][/tex]

Answer :

Sure! Let's multiply the polynomials step-by-step.

The given polynomials are [tex]\((4x^2 + 3x + 7)\)[/tex] and [tex]\((8x - 5)\)[/tex].

To multiply these polynomials, we need to distribute each term in the first polynomial with each term in the second polynomial.

First, we distribute [tex]\(4x^2\)[/tex] to both terms in [tex]\(8x - 5\)[/tex]:
[tex]\[ 4x^2 \cdot 8x = 32x^3 \][/tex]
[tex]\[ 4x^2 \cdot (-5) = -20x^2 \][/tex]

Next, we distribute [tex]\(3x\)[/tex] to both terms in [tex]\(8x - 5\)[/tex]:
[tex]\[ 3x \cdot 8x = 24x^2 \][/tex]
[tex]\[ 3x \cdot (-5) = -15x \][/tex]

Finally, we distribute [tex]\(7\)[/tex] to both terms in [tex]\(8x - 5\)[/tex]:
[tex]\[ 7 \cdot 8x = 56x \][/tex]
[tex]\[ 7 \cdot (-5) = -35 \][/tex]

Now, let's combine all these results:
[tex]\[ 32x^3 - 20x^2 + 24x^2 - 15x + 56x - 35 \][/tex]

We combine like terms ([tex]\(x^2\)[/tex] terms, and [tex]\(x\)[/tex] terms):
[tex]\[ 32x^3 + ( -20x^2 + 24x^2 ) + ( -15x + 56x ) - 35 \][/tex]

This simplifies to:
[tex]\[ 32x^3 + 4x^2 + 41x - 35 \][/tex]

So, the correct answer is:
[tex]\[ \boxed{32x^3 + 4x^2 + 41x - 35} \][/tex]

Therefore, the correct answer is:
[tex]\[ \text{A. } 32x^3 + 4x^2 + 41x - 35 \][/tex]