High School

Multiply the polynomials:

[tex](8x^2 + 6x + 8)(6x - 5)[/tex]

A. [tex]48x^3 - 76x^2 + 18x - 40[/tex]

B. [tex]48x^3 - 4x^2 + 18x + 40[/tex]

C. [tex]48x^3 - 4x^2 + 18x - 40[/tex]

D. [tex]48x^3 - 4x^2 + 78x - 40[/tex]

Answer :

To multiply the polynomials [tex]\((8x^2 + 6x + 8)\)[/tex] and [tex]\((6x - 5)\)[/tex], we'll use the distributive property, which involves multiplying each term in the first polynomial by each term in the second polynomial. Let's go through this step-by-step:

1. Multiply [tex]\(8x^2\)[/tex] by each term in [tex]\((6x - 5)\)[/tex]:

- [tex]\(8x^2 \cdot 6x = 48x^3\)[/tex]
- [tex]\(8x^2 \cdot -5 = -40x^2\)[/tex]

2. Multiply [tex]\(6x\)[/tex] by each term in [tex]\((6x - 5)\)[/tex]:

- [tex]\(6x \cdot 6x = 36x^2\)[/tex]
- [tex]\(6x \cdot -5 = -30x\)[/tex]

3. Multiply [tex]\(8\)[/tex] by each term in [tex]\((6x - 5)\)[/tex]:

- [tex]\(8 \cdot 6x = 48x\)[/tex]
- [tex]\(8 \cdot -5 = -40\)[/tex]

4. Combine the like terms:

- The [tex]\(x^3\)[/tex] term: [tex]\(48x^3\)[/tex]
- The [tex]\(x^2\)[/tex] terms: [tex]\(-40x^2 + 36x^2 = -4x^2\)[/tex]
- The [tex]\(x\)[/tex] terms: [tex]\(-30x + 48x = 18x\)[/tex]
- The constant term: [tex]\(-40\)[/tex]

So, the final result of multiplying the polynomials is:

[tex]\[48x^3 - 4x^2 + 18x - 40\][/tex]

This corresponds to option C in the given choices.