College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply the polynomials:

[tex](7x^2 + 5x + 7)(4x - 6)[/tex]

A. [tex]28x^3 - 22x^2 - 58x - 42[/tex]

B. [tex]28x^3 - 22x^2 - 2x - 42[/tex]

C. [tex]28x^3 - 22x^2 - 2x + 42[/tex]

D. [tex]28x^3 - 62x^2 - 2x - 42[/tex]

Answer :

To multiply the polynomials [tex]\((7x^2 + 5x + 7)\)[/tex] and [tex]\((4x - 6)\)[/tex], we'll use the distributive property to ensure each term in the first polynomial is multiplied by each term in the second polynomial.

Here's how you can perform the multiplication step-by-step:

1. Multiply [tex]\(7x^2\)[/tex] by each term in the second polynomial:

- [tex]\(7x^2 \times 4x = 28x^3\)[/tex]
- [tex]\(7x^2 \times (-6) = -42x^2\)[/tex]

2. Multiply [tex]\(5x\)[/tex] by each term in the second polynomial:

- [tex]\(5x \times 4x = 20x^2\)[/tex]
- [tex]\(5x \times (-6) = -30x\)[/tex]

3. Multiply [tex]\(7\)[/tex] by each term in the second polynomial:

- [tex]\(7 \times 4x = 28x\)[/tex]
- [tex]\(7 \times (-6) = -42\)[/tex]

4. Combine all these results:

- Combine all the [tex]\(x^3\)[/tex] terms: [tex]\(28x^3\)[/tex]
- Combine all the [tex]\(x^2\)[/tex] terms: [tex]\(-42x^2 + 20x^2 = -22x^2\)[/tex]
- Combine all the [tex]\(x\)[/tex] terms: [tex]\(-30x + 28x = -2x\)[/tex]
- Combine the constant terms: [tex]\(-42\)[/tex]

5. Write out the simplified polynomial:

The result of multiplying the two polynomials is:
[tex]\[
28x^3 - 22x^2 - 2x - 42
\][/tex]

Thus, the solution is option B: [tex]\(28x^3 - 22x^2 - 2x - 42\)[/tex].