College

Multiply the polynomials:

[tex](5x^2 + 2x + 8)(7x - 6)[/tex]

A. [tex]35x^3 - 16x^2 + 44x - 48[/tex]
B. [tex]35x^3 - 14x^2 + 44x - 48[/tex]
C. [tex]35x^3 - 16x^2 - 44x - 48[/tex]
D. [tex]35x^3 - 16x^2 + 44x + 48[/tex]

Answer :

Sure! Let's multiply the polynomials [tex]\((5x^2 + 2x + 8)\)[/tex] and [tex]\((7x - 6)\)[/tex] step-by-step:

1. Distribute each term in the first polynomial to each term in the second polynomial:

- Multiply [tex]\(5x^2\)[/tex] by each term in [tex]\((7x - 6)\)[/tex]:
- [tex]\(5x^2 \cdot 7x = 35x^3\)[/tex]
- [tex]\(5x^2 \cdot (-6) = -30x^2\)[/tex]

- Multiply [tex]\(2x\)[/tex] by each term in [tex]\((7x - 6)\)[/tex]:
- [tex]\(2x \cdot 7x = 14x^2\)[/tex]
- [tex]\(2x \cdot (-6) = -12x\)[/tex]

- Multiply [tex]\(8\)[/tex] by each term in [tex]\((7x - 6)\)[/tex]:
- [tex]\(8 \cdot 7x = 56x\)[/tex]
- [tex]\(8 \cdot (-6) = -48\)[/tex]

2. Combine all these terms together:

[tex]\[35x^3 + (-30x^2) + 14x^2 + (-12x) + 56x - 48\][/tex]

3. Combine like terms:

- Combine the [tex]\(x^2\)[/tex] terms: [tex]\(-30x^2 + 14x^2 = -16x^2\)[/tex]
- Combine the [tex]\(x\)[/tex] terms: [tex]\(-12x + 56x = 44x\)[/tex]

4. Write the final expression:

[tex]\[35x^3 - 16x^2 + 44x - 48\][/tex]

So, the correct answer is:

[tex]\[
\boxed{35x^3 - 16x^2 + 44x - 48}
\][/tex]

This matches option A.