College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply the polynomials:

[tex]
(5x^2 + 2x + 8)(7x - 6)
[/tex]

A. [tex]35x^3 - 16x^2 + 44x + 48[/tex]

B. [tex]35x^3 - 16x^2 - 44x - 48[/tex]

C. [tex]35x^3 - 14x^2 + 44x - 48[/tex]

D. [tex]35x^3 - 16x^2 + 44x - 48[/tex]

Answer :

To multiply the polynomials [tex]\((5x^2 + 2x + 8)(7x - 6)\)[/tex], we will use the distributive property (also known as the FOIL method for binomials). Let's break it down step-by-step:

1. Multiply each term in the first polynomial by each term in the second polynomial:

- Multiply [tex]\(5x^2\)[/tex] by each term in [tex]\(7x - 6\)[/tex]:
- [tex]\(5x^2 \times 7x = 35x^3\)[/tex]
- [tex]\(5x^2 \times -6 = -30x^2\)[/tex]

- Multiply [tex]\(2x\)[/tex] by each term in [tex]\(7x - 6\)[/tex]:
- [tex]\(2x \times 7x = 14x^2\)[/tex]
- [tex]\(2x \times -6 = -12x\)[/tex]

- Multiply [tex]\(8\)[/tex] by each term in [tex]\(7x - 6\)[/tex]:
- [tex]\(8 \times 7x = 56x\)[/tex]
- [tex]\(8 \times -6 = -48\)[/tex]

2. Combine all the products:
- [tex]\(35x^3\)[/tex]
- [tex]\(-30x^2 + 14x^2 = -16x^2\)[/tex] (Combine the [tex]\(x^2\)[/tex] terms)
- [tex]\(-12x + 56x = 44x\)[/tex] (Combine the [tex]\(x\)[/tex] terms)
- [tex]\(-48\)[/tex]

3. Combine all these terms to form the final polynomial:
[tex]\[
35x^3 - 16x^2 + 44x - 48
\][/tex]

So, the multiplied result of the polynomials is:
[tex]\[
35x^3 - 16x^2 + 44x - 48
\][/tex]

Therefore, the correct answer is option D: [tex]\(35x^3 - 16x^2 + 44x - 48\)[/tex].