College

Multiply the polynomials:

[tex](4x^2 + 4x + 6)(7x + 5)[/tex]

A. [tex]28x^3 + 8x^2 + 22x - 30[/tex]

B. [tex]28x^3 - 40x^2 + 70x + 30[/tex]

C. [tex]28x^3 + 8x^2 + 22x + 30[/tex]

D. [tex]28x^3 + 48x^2 + 62x + 30[/tex]

Answer :

Let's solve the problem by multiplying the given polynomials step-by-step.

We need to multiply [tex]\((4x^2 + 4x + 6)(7x + 5)\)[/tex].

### Step 1: Distribute each term in the first polynomial to each term in the second polynomial.

1. Multiply [tex]\(4x^2\)[/tex] by each term in [tex]\( (7x + 5) \)[/tex]:

- [tex]\(4x^2 \times 7x = 28x^3\)[/tex]
- [tex]\(4x^2 \times 5 = 20x^2\)[/tex]

2. Multiply [tex]\(4x\)[/tex] by each term in [tex]\( (7x + 5) \)[/tex]:

- [tex]\(4x \times 7x = 28x^2\)[/tex]
- [tex]\(4x \times 5 = 20x\)[/tex]

3. Multiply [tex]\(6\)[/tex] by each term in [tex]\( (7x + 5) \)[/tex]:

- [tex]\(6 \times 7x = 42x\)[/tex]
- [tex]\(6 \times 5 = 30\)[/tex]

### Step 2: Write down all the products.

- From the distribution, we have:
- [tex]\(28x^3\)[/tex]
- [tex]\(20x^2 + 28x^2 = 48x^2\)[/tex] (Combine like terms)
- [tex]\(20x + 42x = 62x\)[/tex] (Combine like terms)
- [tex]\(30\)[/tex]

### Final Result

Putting it all together, the resulting polynomial is:

[tex]\[28x^3 + 48x^2 + 62x + 30\][/tex]

So, the correct answer is:
[tex]\[ \text{D. } 28x^3 + 48x^2 + 62x + 30 \][/tex]