Answer :
To multiply a monomial by a polynomial, you distribute the monomial across each term in the polynomial. Here's how you can do it step-by-step:
Given expression:
[tex]\[
-2x^3 \left(x^3 - 6x^2 - 5x + 1\right)
\][/tex]
### Step-by-Step Multiplication:
1. Multiply [tex]\(-2x^3\)[/tex] by the first term [tex]\(x^3\)[/tex]:
[tex]\[
-2x^3 \cdot x^3 = -2x^{3+3} = -2x^6
\][/tex]
2. Multiply [tex]\(-2x^3\)[/tex] by the second term [tex]\(-6x^2\)[/tex]:
[tex]\[
-2x^3 \cdot (-6x^2) = 12x^{3+2} = 12x^5
\][/tex]
3. Multiply [tex]\(-2x^3\)[/tex] by the third term [tex]\(-5x\)[/tex]:
[tex]\[
-2x^3 \cdot (-5x) = 10x^{3+1} = 10x^4
\][/tex]
4. Multiply [tex]\(-2x^3\)[/tex] by the fourth term [tex]\(1\)[/tex]:
[tex]\[
-2x^3 \cdot 1 = -2x^3
\][/tex]
### Combine the Results:
Now, add all these results together:
[tex]\[
-2x^6 + 12x^5 + 10x^4 - 2x^3
\][/tex]
Therefore, when you multiply the monomial [tex]\(-2x^3\)[/tex] by the polynomial [tex]\(x^3 - 6x^2 - 5x + 1\)[/tex], the result is:
[tex]\[
-2x^6 + 12x^5 + 10x^4 - 2x^3
\][/tex]
Given expression:
[tex]\[
-2x^3 \left(x^3 - 6x^2 - 5x + 1\right)
\][/tex]
### Step-by-Step Multiplication:
1. Multiply [tex]\(-2x^3\)[/tex] by the first term [tex]\(x^3\)[/tex]:
[tex]\[
-2x^3 \cdot x^3 = -2x^{3+3} = -2x^6
\][/tex]
2. Multiply [tex]\(-2x^3\)[/tex] by the second term [tex]\(-6x^2\)[/tex]:
[tex]\[
-2x^3 \cdot (-6x^2) = 12x^{3+2} = 12x^5
\][/tex]
3. Multiply [tex]\(-2x^3\)[/tex] by the third term [tex]\(-5x\)[/tex]:
[tex]\[
-2x^3 \cdot (-5x) = 10x^{3+1} = 10x^4
\][/tex]
4. Multiply [tex]\(-2x^3\)[/tex] by the fourth term [tex]\(1\)[/tex]:
[tex]\[
-2x^3 \cdot 1 = -2x^3
\][/tex]
### Combine the Results:
Now, add all these results together:
[tex]\[
-2x^6 + 12x^5 + 10x^4 - 2x^3
\][/tex]
Therefore, when you multiply the monomial [tex]\(-2x^3\)[/tex] by the polynomial [tex]\(x^3 - 6x^2 - 5x + 1\)[/tex], the result is:
[tex]\[
-2x^6 + 12x^5 + 10x^4 - 2x^3
\][/tex]