College

Multiply the following polynomials:

[tex]
\[
\begin{array}{r}
x^2 + 4x + 2 \\
\times \quad (2x^2 + 3x - 4) \\
\hline
\end{array}
\]
[/tex]

Choose the correct answer:

A. [tex]2x^4 + 23x^2 - 10x - 8[/tex]

B. [tex]3x^2 + 7x - 2[/tex]

C. [tex]2x^4 + 12x^2 - 8[/tex]

D. [tex]2x^4 + 11x^3 + 12x^2 - 10x - 8[/tex]

Answer :

To multiply the polynomials [tex]\(x^2 + 4x + 2\)[/tex] and [tex]\(2x^2 + 3x - 4\)[/tex], follow these steps:

1. Distribute Each Term: Multiply each term in the first polynomial by each term in the second polynomial.

2. Multiply Terms:

- [tex]\(x^2\)[/tex] times each term in [tex]\(2x^2 + 3x - 4\)[/tex]:

- [tex]\(x^2 \cdot 2x^2 = 2x^4\)[/tex]
- [tex]\(x^2 \cdot 3x = 3x^3\)[/tex]
- [tex]\(x^2 \cdot (-4) = -4x^2\)[/tex]

- [tex]\(4x\)[/tex] times each term in [tex]\(2x^2 + 3x - 4\)[/tex]:

- [tex]\(4x \cdot 2x^2 = 8x^3\)[/tex]
- [tex]\(4x \cdot 3x = 12x^2\)[/tex]
- [tex]\(4x \cdot (-4) = -16x\)[/tex]

- [tex]\(2\)[/tex] times each term in [tex]\(2x^2 + 3x - 4\)[/tex]:

- [tex]\(2 \cdot 2x^2 = 4x^2\)[/tex]
- [tex]\(2 \cdot 3x = 6x\)[/tex]
- [tex]\(2 \cdot (-4) = -8\)[/tex]

3. Combine Like Terms:

- Combine all the terms from the multiplication:

- Combine [tex]\(x^4\)[/tex] terms: [tex]\(2x^4\)[/tex]
- Combine [tex]\(x^3\)[/tex] terms: [tex]\(3x^3 + 8x^3 = 11x^3\)[/tex]
- Combine [tex]\(x^2\)[/tex] terms: [tex]\(-4x^2 + 12x^2 + 4x^2 = 12x^2\)[/tex]
- Combine [tex]\(x\)[/tex] terms: [tex]\(-16x + 6x = -10x\)[/tex]
- Combine constant terms: [tex]\(-8\)[/tex]

So, the final result is:

[tex]\[2x^4 + 11x^3 + 12x^2 - 10x - 8\][/tex]

Therefore, the correct answer is option D: [tex]\(2x^4 + 11x^3 + 12x^2 - 10x - 8\)[/tex].