College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply the following expressions:

[tex](3x^2 - 4x + 5)(x^2 - 3x + 2)[/tex]

A. [tex]3x^4 + 12x^2 + 10[/tex]
B. [tex]3x^4 + 10x^2 + 12x + 10[/tex]
C. [tex]4x^2 - 7x + 7[/tex]
D. [tex]3x^4 - 13x^3 + 23x^2 - 23x + 10[/tex]

Answer :

To multiply the polynomials [tex]\((3x^2 - 4x + 5)\)[/tex] and [tex]\((x^2 - 3x + 2)\)[/tex], we'll use the distributive property, often called the FOIL method (First, Outside, Inside, Last), to ensure every term in the first polynomial is multiplied by every term in the second polynomial.

Let's go through the multiplication step-by-step:

1. Multiply each term in the first polynomial by each term in the second polynomial:

- [tex]\( (3x^2) \times (x^2) = 3x^4 \)[/tex]
- [tex]\( (3x^2) \times (-3x) = -9x^3 \)[/tex]
- [tex]\( (3x^2) \times (2) = 6x^2 \)[/tex]

- [tex]\( (-4x) \times (x^2) = -4x^3 \)[/tex]
- [tex]\( (-4x) \times (-3x) = 12x^2 \)[/tex]
- [tex]\( (-4x) \times (2) = -8x \)[/tex]

- [tex]\( (5) \times (x^2) = 5x^2 \)[/tex]
- [tex]\( (5) \times (-3x) = -15x \)[/tex]
- [tex]\( (5) \times (2) = 10 \)[/tex]

2. Combine all the terms:

[tex]\[
3x^4 + (-9x^3) + 6x^2 + (-4x^3) + 12x^2 + (-8x) + 5x^2 + (-15x) + 10
\][/tex]

3. Combine like terms:

- The [tex]\(x^4\)[/tex] term: [tex]\(3x^4\)[/tex]
- The [tex]\(x^3\)[/tex] terms: [tex]\(-9x^3 - 4x^3 = -13x^3\)[/tex]
- The [tex]\(x^2\)[/tex] terms: [tex]\(6x^2 + 12x^2 + 5x^2 = 23x^2\)[/tex]
- The [tex]\(x\)[/tex] terms: [tex]\(-8x - 15x = -23x\)[/tex]
- The constant term: [tex]\(10\)[/tex]

Putting it all together, the expanded expression is:
[tex]\[ 3x^4 - 13x^3 + 23x^2 - 23x + 10 \][/tex]

Therefore, the correct answer is option D: [tex]\(3x^4 - 13x^3 + 23x^2 - 23x + 10\)[/tex].