High School

Multiply the following expressions:



\[

\begin{array}{r}

x^2 + 4x + 2 \\

\times \quad (2x^2 + 3x - 4) \\

\hline

\end{array}

\]



A. \(2x^4 + 11x^3 + 12x^2 - 10x - 8\)



B. \(2x^4 + 12x^2 - 8\)



C. \(3x^2 + 7x - 2\)



D. \(2x^4 + 23x^2 - 10x - 8\)

Answer :

To multiply the polynomials
$$
(x^2 + 4x + 2)(2x^2 + 3x - 4),
$$
we follow these steps:

1. **Distribute Each Term:**

Multiply each term of the first polynomial by each term of the second polynomial.

- Multiply \(x^2\) by each term in \(2x^2 + 3x - 4\):
\[
\begin{aligned}
x^2 \times 2x^2 &= 2x^4,\\[1mm]
x^2 \times 3x &= 3x^3,\\[1mm]
x^2 \times (-4) &= -4x^2.
\end{aligned}
\]

- Multiply \(4x\) by each term in \(2x^2 + 3x - 4\):
\[
\begin{aligned}
4x \times 2x^2 &= 8x^3,\\[1mm]
4x \times 3x &= 12x^2,\\[1mm]
4x \times (-4) &= -16x.
\end{aligned}
\]

- Multiply \(2\) by each term in \(2x^2 + 3x - 4\):
\[
\begin{aligned}
2 \times 2x^2 &= 4x^2,\\[1mm]
2 \times 3x &= 6x,\\[1mm]
2 \times (-4) &= -8.
\end{aligned}
\]

2. **Combine Like Terms:**

Now, add all the results together:

- For the \(x^4\) term:
\[
2x^4.
\]

- For the \(x^3\) terms:
\[
3x^3 + 8x^3 = 11x^3.
\]

- For the \(x^2\) terms:
\[
-4x^2 + 12x^2 + 4x^2 = 12x^2.
\]

- For the \(x\) terms:
\[
-16x + 6x = -10x.
\]

- The constant term is:
\[
-8.
\]

3. **Write the Final Expression:**

Putting it all together, the product is:
$$
2x^4 + 11x^3 + 12x^2 - 10x - 8.
$$

Thus, the correct answer is:

$$\boxed{2x^4 + 11x^3 + 12x^2 - 10x - 8.}$$