College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply.

[tex]\left(x^4+1\right)\left(3x^2+9x+2\right)[/tex]

Options:
A. [tex]x^4 + 3x^2 + 9x + 3[/tex]
B. [tex]3x^6 + 9x^5 + 2x^4 + 3x^2 + 9x + 2[/tex]
C. [tex]3x^7 + 9x^6 + 2x^5[/tex]
D. [tex]3x^8 + 9x^4 + 2x^4 + 3x^2 + 9x + 2[/tex]

Answer :

To solve the multiplication problem [tex]\((x^4 + 1)(3x^2 + 9x + 2)\)[/tex], we will expand the expression by distributing each term from the first polynomial across each term of the second polynomial.

Here’s how we do it step-by-step:

1. Distribute [tex]\(x^4\)[/tex] across [tex]\(3x^2 + 9x + 2\)[/tex]:

- [tex]\(x^4 \cdot 3x^2 = 3x^{6}\)[/tex]
- [tex]\(x^4 \cdot 9x = 9x^{5}\)[/tex]
- [tex]\(x^4 \cdot 2 = 2x^{4}\)[/tex]

So from distributing [tex]\(x^4\)[/tex], we get: [tex]\(3x^6 + 9x^5 + 2x^4\)[/tex]

2. Distribute [tex]\(1\)[/tex] across [tex]\(3x^2 + 9x + 2\)[/tex]:

- [tex]\(1 \cdot 3x^2 = 3x^2\)[/tex]
- [tex]\(1 \cdot 9x = 9x\)[/tex]
- [tex]\(1 \cdot 2 = 2\)[/tex]

So from distributing [tex]\(1\)[/tex], we get: [tex]\(3x^2 + 9x + 2\)[/tex]

3. Combine all the terms:

Now, we add together all these parts from above:

[tex]\[
3x^6 + 9x^5 + 2x^4 + 3x^2 + 9x + 2
\][/tex]

This is the expanded form of [tex]\((x^4 + 1)(3x^2 + 9x + 2)\)[/tex].

Therefore, the result is [tex]\(3x^6 + 9x^5 + 2x^4 + 3x^2 + 9x + 2\)[/tex]. This represents the fully expanded product of the given polynomials.