Answer :
To multiply the polynomials [tex]\((x^2 + 4x + 2)\)[/tex] and [tex]\((2x^2 + 3x - 4)\)[/tex], we'll use the distributive property, also known as the FOIL method for distributing across multiple terms.
1. Multiply each term in the first polynomial by each term in the second polynomial:
- [tex]\(x^2 \times 2x^2 = 2x^4\)[/tex]
- [tex]\(x^2 \times 3x = 3x^3\)[/tex]
- [tex]\(x^2 \times (-4) = -4x^2\)[/tex]
- [tex]\(4x \times 2x^2 = 8x^3\)[/tex]
- [tex]\(4x \times 3x = 12x^2\)[/tex]
- [tex]\(4x \times (-4) = -16x\)[/tex]
- [tex]\(2 \times 2x^2 = 4x^2\)[/tex]
- [tex]\(2 \times 3x = 6x\)[/tex]
- [tex]\(2 \times (-4) = -8\)[/tex]
2. Combine all these terms:
[tex]\[
2x^4 + 3x^3 + 8x^3 + (-4x^2) + 12x^2 + 4x^2 + (-16x) + 6x + (-8)
\][/tex]
3. Simplify by combining like terms:
- [tex]\(2x^4\)[/tex] (no like terms for [tex]\(x^4\)[/tex])
- Combine [tex]\(3x^3 + 8x^3 = 11x^3\)[/tex]
- Combine [tex]\((-4x^2) + 12x^2 + 4x^2 = 12x^2\)[/tex]
- Combine [tex]\((-16x) + 6x = -10x\)[/tex]
- [tex]\(-8\)[/tex] (constant term)
So, after simplifying, we get the product:
[tex]\[
2x^4 + 11x^3 + 12x^2 - 10x - 8
\][/tex]
This matches option D.
1. Multiply each term in the first polynomial by each term in the second polynomial:
- [tex]\(x^2 \times 2x^2 = 2x^4\)[/tex]
- [tex]\(x^2 \times 3x = 3x^3\)[/tex]
- [tex]\(x^2 \times (-4) = -4x^2\)[/tex]
- [tex]\(4x \times 2x^2 = 8x^3\)[/tex]
- [tex]\(4x \times 3x = 12x^2\)[/tex]
- [tex]\(4x \times (-4) = -16x\)[/tex]
- [tex]\(2 \times 2x^2 = 4x^2\)[/tex]
- [tex]\(2 \times 3x = 6x\)[/tex]
- [tex]\(2 \times (-4) = -8\)[/tex]
2. Combine all these terms:
[tex]\[
2x^4 + 3x^3 + 8x^3 + (-4x^2) + 12x^2 + 4x^2 + (-16x) + 6x + (-8)
\][/tex]
3. Simplify by combining like terms:
- [tex]\(2x^4\)[/tex] (no like terms for [tex]\(x^4\)[/tex])
- Combine [tex]\(3x^3 + 8x^3 = 11x^3\)[/tex]
- Combine [tex]\((-4x^2) + 12x^2 + 4x^2 = 12x^2\)[/tex]
- Combine [tex]\((-16x) + 6x = -10x\)[/tex]
- [tex]\(-8\)[/tex] (constant term)
So, after simplifying, we get the product:
[tex]\[
2x^4 + 11x^3 + 12x^2 - 10x - 8
\][/tex]
This matches option D.