High School

Multiply [tex]5x^2(2x^2 + 13x - 5)[/tex].

A. [tex]10x^4 + 65x^3 - 25x^2[/tex]

B. [tex]10x^2 + 65x - 25[/tex]

C. [tex]7x^2 + 18x - 10[/tex]

D. [tex]7x^4 + 18x^3 - 10x^2[/tex]

Answer :

Sure! Let's multiply the expression [tex]\(5x^2(2x^2 + 13x - 5)\)[/tex] step by step using the distributive property. Here's how you can do it:

1. Distribute [tex]\(5x^2\)[/tex] across each term inside the parentheses:

[tex]\[
5x^2 \cdot 2x^2 = (5 \cdot 2)x^{2+2} = 10x^4
\][/tex]

2. Multiply [tex]\(5x^2\)[/tex] with the second term [tex]\(13x\)[/tex]:

[tex]\[
5x^2 \cdot 13x = (5 \cdot 13)x^{2+1} = 65x^3
\][/tex]

3. Multiply [tex]\(5x^2\)[/tex] with the third term [tex]\(-5\)[/tex]:

[tex]\[
5x^2 \cdot (-5) = (5 \cdot -5)x^2 = -25x^2
\][/tex]

Putting it all together, the expanded expression is:

[tex]\[
10x^4 + 65x^3 - 25x^2
\][/tex]

This matches one of the given options, which is [tex]\(10x^4 + 65x^3 - 25x^2\)[/tex]. So, the correct answer is the first choice.