College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply: [tex](2x - 4)(x^2 + 3x - 7)[/tex]

A. [tex]-2x^3 - 6x^2 + 14x + 28[/tex]
B. [tex]-4x^2 - 12x + 28[/tex]
C. [tex]2x^3 + 2x^2 - 26x + 28[/tex]
D. [tex]2x^3 + 6x^2 - 14x[/tex]

Answer :

To multiply the expressions [tex]\((2x - 4)\)[/tex] and [tex]\((x^2 + 3x - 7)\)[/tex], we'll use the distributive property, also known as the distributive law of multiplication over addition. Here's how you can do it step-by-step:

1. Distribute [tex]\(2x\)[/tex]:

Multiply [tex]\(2x\)[/tex] by each term inside the second expression [tex]\((x^2 + 3x - 7)\)[/tex]:

- [tex]\(2x \times x^2 = 2x^3\)[/tex]
- [tex]\(2x \times 3x = 6x^2\)[/tex]
- [tex]\(2x \times (-7) = -14x\)[/tex]

So, distributing [tex]\(2x\)[/tex] gives us: [tex]\(2x^3 + 6x^2 - 14x\)[/tex].

2. Distribute [tex]\(-4\)[/tex]:

Multiply [tex]\(-4\)[/tex] by each term inside the second expression [tex]\((x^2 + 3x - 7)\)[/tex]:

- [tex]\(-4 \times x^2 = -4x^2\)[/tex]
- [tex]\(-4 \times 3x = -12x\)[/tex]
- [tex]\(-4 \times (-7) = 28\)[/tex]

So, distributing [tex]\(-4\)[/tex] gives us: [tex]\(-4x^2 - 12x + 28\)[/tex].

3. Combine like terms:

Now, add up all the results from both distributions:

[tex]\[
2x^3 + 6x^2 - 14x - 4x^2 - 12x + 28
\][/tex]

- Combine the [tex]\(x^2\)[/tex] terms: [tex]\(6x^2 - 4x^2 = 2x^2\)[/tex]
- Combine the [tex]\(x\)[/tex] terms: [tex]\(-14x - 12x = -26x\)[/tex]

Thus, the combined and simplified expression is:

[tex]\[
2x^3 + 2x^2 - 26x + 28
\][/tex]

Therefore, the correct answer is option c: [tex]\(2x^3 + 2x^2 - 26x + 28\)[/tex].