High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply and simplify the product: [tex](8-5i)^2[/tex]

Select the product:

A. 39
B. 89
C. [tex]39-80i[/tex]
D. [tex]89-80i[/tex]

Answer :

To solve the expression [tex]\((8 - 5i)^2\)[/tex], we can use the formula for the square of a binomial:

[tex]\[
(a - b)^2 = a^2 - 2ab + b^2
\][/tex]

Let's identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex] from the expression:

- [tex]\(a = 8\)[/tex]
- [tex]\(b = 5i\)[/tex]

Now, let's apply the formula step-by-step:

1. Calculate [tex]\(a^2\)[/tex]:

[tex]\[
a^2 = 8^2 = 64
\][/tex]

2. Calculate [tex]\(-2ab\)[/tex]:

[tex]\[
-2ab = -2 \times 8 \times (5i) = -80i
\][/tex]

3. Calculate [tex]\(b^2\)[/tex]:

Since [tex]\(b = 5i\)[/tex], then:

[tex]\[
b^2 = (5i)^2 = 25i^2
\][/tex]

We know that [tex]\(i^2 = -1\)[/tex], so:

[tex]\[
25i^2 = 25 \times -1 = -25
\][/tex]

4. Combine the results:

Now, summing up all the parts from the formula:

[tex]\[
(8 - 5i)^2 = 64 + (-80i) + (-25)
\][/tex]

Simplify it further:

[tex]\[
= 64 - 25 - 80i
\][/tex]

[tex]\[
= 39 - 80i
\][/tex]

Thus, the simplified product of [tex]\((8 - 5i)^2\)[/tex] is [tex]\(39 - 80i\)[/tex]. Therefore, the answer is [tex]\(\boxed{39 - 80i}\)[/tex].