College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply and simplify the product: [tex]\((8 - 5i)^2\)[/tex]

Select the product:

A. 39

B. 89

C. 39 - 80i

D. 89 - 80i

Answer :

To solve the problem [tex]\((8-5i)^2\)[/tex], we will use the formula for squaring a binomial [tex]\((a-b)^2 = a^2 - 2ab + b^2\)[/tex].

Here, [tex]\(a = 8\)[/tex] and [tex]\(b = 5i\)[/tex].

1. Calculate [tex]\(a^2\)[/tex]:
[tex]\[
a^2 = 8^2 = 64
\][/tex]

2. Calculate [tex]\(-2ab\)[/tex]:
[tex]\[
-2ab = -2 \cdot 8 \cdot 5i = -80i
\][/tex]

3. Calculate [tex]\(b^2\)[/tex]:
[tex]\[
b^2 = (5i)^2 = 25i^2
\][/tex]
Since [tex]\(i^2 = -1\)[/tex], we have:
[tex]\[
25i^2 = 25(-1) = -25
\][/tex]

4. Combine all the parts together:
[tex]\[
(8-5i)^2 = a^2 - 2ab + b^2 = 64 - 80i - 25
\][/tex]

5. Simplify the expression:
[tex]\[
64 - 25 = 39
\][/tex]
Hence, the simplified product is:
[tex]\[
39 - 80i
\][/tex]

Therefore, the product is [tex]\(39 - 80i\)[/tex].