College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply and simplify the product.

\[ (8-5i)^2 \]

Select the product:

A. 39
B. 89
C. \[39-80i\]
D. 89-80i

Answer :

Sure! Let's work through the steps to multiply and simplify [tex]\((8 - 5i)^2\)[/tex].

1. Expand the expression:
[tex]\[
(8 - 5i)^2 = (8 - 5i)(8 - 5i)
\][/tex]

2. Use the distributive property to expand:
[tex]\[
(8 - 5i)(8 - 5i) = 8 \cdot 8 + 8 \cdot (-5i) + (-5i) \cdot 8 + (-5i) \cdot (-5i)
\][/tex]

3. Perform the multiplications:
[tex]\[
8 \cdot 8 = 64
\][/tex]
[tex]\[
8 \cdot (-5i) = -40i
\][/tex]
[tex]\[
(-5i) \cdot 8 = -40i
\][/tex]
[tex]\[
(-5i) \cdot (-5i) = 25i^2
\][/tex]

4. Simplify the term involving [tex]\(i^2\)[/tex]:
Remember that [tex]\(i^2 = -1\)[/tex], so:
[tex]\[
25i^2 = 25 \cdot (-1) = -25
\][/tex]

5. Combine all terms:
[tex]\[
64 - 40i - 40i - 25
\][/tex]

6. Combine like terms:
[tex]\[
64 - 25 = 39 \quad \text{(real part)}
\][/tex]
[tex]\[
-40i - 40i = -80i \quad \text{(imaginary part)}
\][/tex]

So, the simplified product is:
[tex]\[
39 - 80i
\][/tex]

Therefore, the correct answer is:
[tex]\[
\boxed{39 - 80i}
\][/tex]