College

Let the function [tex]$f$[/tex] be defined as [tex]$f(x)=3x-4(x+9)^2$[/tex]. What is the value of [tex]$f(-3)$[/tex]?

A. 150
B. 139
C. -144
D. -135
E. -153

Answer :

To find the value of [tex]\( f(-3) \)[/tex] for the function [tex]\( f(x) = 3x - 4(x + 9)^2 \)[/tex], we should follow these steps:

1. Substitute [tex]\( x = -3 \)[/tex] into the function [tex]\( f(x) \)[/tex].

[tex]\[
f(-3) = 3(-3) - 4((-3) + 9)^2
\][/tex]

2. Simplify the first part of the expression:

[tex]\[
3(-3) = -9
\][/tex]

3. Simplify the expression inside the parentheses:

[tex]\[
(-3) + 9 = 6
\][/tex]

4. Square the result from the previous step:

[tex]\[
6^2 = 36
\][/tex]

5. Multiply the squared result by -4:

[tex]\[
-4 \times 36 = -144
\][/tex]

6. Combine all the simplified parts:

[tex]\[
f(-3) = -9 - 144
\][/tex]

7. Perform the final subtraction:

[tex]\[
-9 - 144 = -153
\][/tex]

So, the value of [tex]\( f(-3) \)[/tex] is [tex]\( -153 \)[/tex].

The correct answer is [tex]\(\boxed{-153}\)[/tex].