College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Let [tex]f(x) = x^2 - 16x + 71[/tex].

What is the vertex and minimum value of [tex]f(x)[/tex]?

A. Vertex: [tex](-8, 7)[/tex]
B. Vertex: [tex](8, 7)[/tex]
C. Vertex: [tex](7, -8)[/tex]

D. Minimum value: 7
E. Minimum value: 71
F. Minimum value: 8

Answer :

To find the vertex and the minimum value of the quadratic function [tex]\( f(x) = x^2 - 16x + 71 \)[/tex], we can follow these steps:

1. Identify the coefficients: In the function [tex]\( f(x) = ax^2 + bx + c \)[/tex], the coefficients are:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = -16 \)[/tex]
- [tex]\( c = 71 \)[/tex]

2. Use the vertex formula: The formula to find the x-coordinate of the vertex of a quadratic function is:
[tex]\[
x = -\frac{b}{2a}
\][/tex]

3. Calculate the x-coordinate of the vertex:
[tex]\[
x = -\frac{-16}{2 \times 1} = \frac{16}{2} = 8
\][/tex]

4. Find the y-coordinate of the vertex: Substitute [tex]\( x = 8 \)[/tex] back into the function to find the y-coordinate (which is also the minimum value since the parabola opens upwards):
[tex]\[
f(8) = (8)^2 - 16(8) + 71 = 64 - 128 + 71 = 7
\][/tex]

5. Conclusion: The vertex of the function is [tex]\((8, 7)\)[/tex], and the minimum value of [tex]\( f(x) \)[/tex] is [tex]\( 7 \)[/tex].

Therefore, the answers for the question are:
- Vertex: [tex]\((8, 7)\)[/tex]
- Minimum value: [tex]\(7\)[/tex]