Answer :
We are given the functions
[tex]$$
f(x)=4 \quad \text{and} \quad g(x)=5x-4.
$$[/tex]
The composition of functions [tex]$g\circ f$[/tex] means that we substitute [tex]$f(x)$[/tex] into [tex]$g$[/tex]. This gives:
[tex]$$
g(f(x)) = g(4).
$$[/tex]
Now, substituting [tex]$4$[/tex] into [tex]$g(x)$[/tex]:
[tex]$$
g(4)=5 \times 4-4.
$$[/tex]
Perform the arithmetic step-by-step:
[tex]\[
5 \times 4 = 20,
\][/tex]
[tex]\[
20 - 4 = 16.
\][/tex]
Hence, the value of the composition is:
[tex]$$
g(f(x))=16.
$$[/tex]
Therefore, the correct answer is [tex]$\boxed{16}$[/tex].
[tex]$$
f(x)=4 \quad \text{and} \quad g(x)=5x-4.
$$[/tex]
The composition of functions [tex]$g\circ f$[/tex] means that we substitute [tex]$f(x)$[/tex] into [tex]$g$[/tex]. This gives:
[tex]$$
g(f(x)) = g(4).
$$[/tex]
Now, substituting [tex]$4$[/tex] into [tex]$g(x)$[/tex]:
[tex]$$
g(4)=5 \times 4-4.
$$[/tex]
Perform the arithmetic step-by-step:
[tex]\[
5 \times 4 = 20,
\][/tex]
[tex]\[
20 - 4 = 16.
\][/tex]
Hence, the value of the composition is:
[tex]$$
g(f(x))=16.
$$[/tex]
Therefore, the correct answer is [tex]$\boxed{16}$[/tex].