Answer :
Let's solve the equation step-by-step:
We are given the equation:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]
1. Distribute the [tex]\(\frac{1}{2}\)[/tex] on the left side:
[tex]\[
\frac{1}{2}x - \frac{1}{2} \times 14 + 11
\][/tex]
Simplifying this gives:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]
2. Combine like terms on the left side:
[tex]\[
\frac{1}{2}x + 4 = \frac{1}{2}x - x + 4
\][/tex]
3. Simplify the right side:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
4. Subtract 4 from both sides:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
5. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
6. Combine the terms:
[tex]\[
x = 0
\][/tex]
Thus, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].
We are given the equation:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]
1. Distribute the [tex]\(\frac{1}{2}\)[/tex] on the left side:
[tex]\[
\frac{1}{2}x - \frac{1}{2} \times 14 + 11
\][/tex]
Simplifying this gives:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]
2. Combine like terms on the left side:
[tex]\[
\frac{1}{2}x + 4 = \frac{1}{2}x - x + 4
\][/tex]
3. Simplify the right side:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
4. Subtract 4 from both sides:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
5. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
6. Combine the terms:
[tex]\[
x = 0
\][/tex]
Thus, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].