College

Karissa begins to solve the equation [tex]\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)[/tex]. Her work is correct and is shown below:

\[
\begin{array}{c}
\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\
\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\
\frac{1}{2} x+4=-\frac{1}{2} x+4
\end{array}
\]

When she subtracts 4 from both sides, [tex]\frac{1}{2} x=-\frac{1}{2} x[/tex] results. What is the value of [tex]x[/tex]?

A. [tex]-1[/tex]
B. [tex]-\frac{1}{2}[/tex]
C. [tex]0[/tex]
D. [tex]\frac{1}{2}[/tex]

Answer :

To solve the equation [tex]\(\frac{1}{2}(x-14)+11=\frac{1}{2}x-(x-4)\)[/tex], Karissa's work progresses as follows:

1. Start by simplifying both sides of the equation:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]

2. Distribute [tex]\(\frac{1}{2}\)[/tex] on the left side:
[tex]\[
\frac{1}{2}x - 7 + 11
\][/tex]

3. Simplify further:
[tex]\[
\frac{1}{2}x + 4
\][/tex]

4. On the right side, distribute the minus sign:
[tex]\[
\frac{1}{2}x - x + 4
\][/tex]

5. Combine the terms:
[tex]\[
-\frac{1}{2}x + 4
\][/tex]

6. Equate both simplified expressions:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

7. Subtract 4 from both sides to isolate terms with [tex]\(x\)[/tex]:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

8. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to combine [tex]\(x\)[/tex] terms:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]

9. Combine like terms:
[tex]\[
x = 0
\][/tex]

Thus, the solution to the equation is [tex]\(x = 0\)[/tex].