High School

Karissa begins to solve the equation:

[tex]
\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4).
[/tex]

Her work is correct and is shown below:

[tex]
\begin{array}{c}
\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\
\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\
\frac{1}{2} x+4=-\frac{1}{2} x+4
\end{array}
[/tex]

When she subtracts 4 from both sides, [tex]\(\frac{1}{2} x=-\frac{1}{2} x\)[/tex] results. What is the value of [tex]\(x\)[/tex]?

A. -1
B. [tex]\(\frac{1}{2}\)[/tex]
C. 0
D. [tex]\(\frac{1}{2}\)[/tex]

Answer :

Let's find the value of [tex]\( x \)[/tex] in the equation:

[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]

Karissa has already made some progress in simplifying the equation. Let's follow through her steps:

1. Distribute the [tex]\(\frac{1}{2}\)[/tex] on the left side:
[tex]\[
\frac{1}{2}x - 7 + 11
\][/tex]
This simplifies to:
[tex]\[
\frac{1}{2}x + 4
\][/tex]

2. Simplify the right side:
[tex]\[
\frac{1}{2}x - x + 4
\][/tex]
This becomes:
[tex]\[
-\frac{1}{2}x + 4
\][/tex]

3. Set the simplified forms from both sides of the equation equal to each other:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

4. Subtract 4 from both sides:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

5. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to simplify:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]

6. Combine the terms:
[tex]\[
x = 0
\][/tex]

So, the value of [tex]\( x \)[/tex] is [tex]\( 0 \)[/tex].