Answer :
Let's solve the equation step by step:
We start with the equation:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2} x - (x - 4)
\][/tex]
1. Simplify both sides:
On the left side, distribute [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[
\frac{1}{2} x - 7 + 11
\][/tex]
Combine the constants:
[tex]\[
\frac{1}{2} x + 4
\][/tex]
On the right side, distribute the negative sign:
[tex]\[
\frac{1}{2} x - x + 4
\][/tex]
This simplifies to:
[tex]\[
-\frac{1}{2} x + 4
\][/tex]
2. Write the simplified equation:
Now our equation looks like this:
[tex]\[
\frac{1}{2} x + 4 = -\frac{1}{2} x + 4
\][/tex]
3. Subtract 4 from both sides:
[tex]\[
\frac{1}{2} x = -\frac{1}{2} x
\][/tex]
4. Solve for [tex]\(x\)[/tex]:
Add [tex]\(\frac{1}{2} x\)[/tex] to both sides:
[tex]\[
\frac{1}{2} x + \frac{1}{2} x = 0
\][/tex]
[tex]\[
x = 0
\][/tex]
So, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].
We start with the equation:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2} x - (x - 4)
\][/tex]
1. Simplify both sides:
On the left side, distribute [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[
\frac{1}{2} x - 7 + 11
\][/tex]
Combine the constants:
[tex]\[
\frac{1}{2} x + 4
\][/tex]
On the right side, distribute the negative sign:
[tex]\[
\frac{1}{2} x - x + 4
\][/tex]
This simplifies to:
[tex]\[
-\frac{1}{2} x + 4
\][/tex]
2. Write the simplified equation:
Now our equation looks like this:
[tex]\[
\frac{1}{2} x + 4 = -\frac{1}{2} x + 4
\][/tex]
3. Subtract 4 from both sides:
[tex]\[
\frac{1}{2} x = -\frac{1}{2} x
\][/tex]
4. Solve for [tex]\(x\)[/tex]:
Add [tex]\(\frac{1}{2} x\)[/tex] to both sides:
[tex]\[
\frac{1}{2} x + \frac{1}{2} x = 0
\][/tex]
[tex]\[
x = 0
\][/tex]
So, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].