Answer :
Let's solve the equation step by step to find the value of [tex]\( x \)[/tex].
We start with the equation after Karissa's simplifications:
[tex]\[ \frac{1}{2}x + 4 = -\frac{1}{2}x + 4 \][/tex]
1. Subtract 4 from both sides to eliminate the constants:
[tex]\[
\frac{1}{2}x + 4 - 4 = -\frac{1}{2}x + 4 - 4
\][/tex]
This simplifies to:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
2. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to combine like terms:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = -\frac{1}{2}x + \frac{1}{2}x
\][/tex]
Simplifying both sides results in:
[tex]\[
x = 0
\][/tex]
Thus, the value of [tex]\( x \)[/tex] is 0.
We start with the equation after Karissa's simplifications:
[tex]\[ \frac{1}{2}x + 4 = -\frac{1}{2}x + 4 \][/tex]
1. Subtract 4 from both sides to eliminate the constants:
[tex]\[
\frac{1}{2}x + 4 - 4 = -\frac{1}{2}x + 4 - 4
\][/tex]
This simplifies to:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
2. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to combine like terms:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = -\frac{1}{2}x + \frac{1}{2}x
\][/tex]
Simplifying both sides results in:
[tex]\[
x = 0
\][/tex]
Thus, the value of [tex]\( x \)[/tex] is 0.