Answer :
Let's solve the equation step-by-step to find the value of [tex]\( x \)[/tex]:
1. Start with the original equation:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]
2. Expand and simplify both sides:
The left-hand side (LHS) is:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - 7 + 11 = \frac{1}{2}x + 4
\][/tex]
The right-hand side (RHS) is:
[tex]\[
\frac{1}{2}x - (x-4) = \frac{1}{2}x - x + 4 = -\frac{1}{2}x + 4
\][/tex]
3. Set the simplified expressions equal to each other:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
4. Subtract 4 from both sides:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
5. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to eliminate [tex]\(x\)[/tex] on the left side:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
[tex]\[
x = 0
\][/tex]
The value of [tex]\( x \)[/tex] that satisfies the equation is [tex]\( \boxed{0} \)[/tex].
1. Start with the original equation:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]
2. Expand and simplify both sides:
The left-hand side (LHS) is:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - 7 + 11 = \frac{1}{2}x + 4
\][/tex]
The right-hand side (RHS) is:
[tex]\[
\frac{1}{2}x - (x-4) = \frac{1}{2}x - x + 4 = -\frac{1}{2}x + 4
\][/tex]
3. Set the simplified expressions equal to each other:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
4. Subtract 4 from both sides:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
5. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to eliminate [tex]\(x\)[/tex] on the left side:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
[tex]\[
x = 0
\][/tex]
The value of [tex]\( x \)[/tex] that satisfies the equation is [tex]\( \boxed{0} \)[/tex].