College

Karissa begins to solve the equation [tex]\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)[/tex]. Her work is correct and is shown below.

[tex]
\begin{array}{c}
\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\
\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\
\frac{1}{2} x+4=-\frac{1}{2} x+4
\end{array}
[/tex]

When she subtracts 4 from both sides, [tex]\frac{1}{2} x=-\frac{1}{2} x[/tex] results. What is the value of [tex]x[/tex]?

A. [tex]-1[/tex]
B. [tex]-\frac{1}{2}[/tex]
C. [tex]0[/tex]
D. [tex]\frac{1}{2}[/tex]

Answer :

To solve the equation [tex]\(\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x - 4)\)[/tex], let's follow these steps:

1. Distribute the terms:
- On the left side, distribute [tex]\(\frac{1}{2}\)[/tex] through [tex]\((x - 14)\)[/tex]:
[tex]\[
\frac{1}{2}x - 7 + 11
\][/tex]
- On the right side, first simplify inside the parentheses:
[tex]\[
\frac{1}{2}x - x + 4
\][/tex]

2. Simplify both sides:
- Combine the constants on the left side:
[tex]\[
\frac{1}{2}x + 4
\][/tex]
- The right side becomes:
[tex]\[
-\frac{1}{2}x + 4
\][/tex]

3. Set the simplified expressions equal to each other:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

4. Subtract 4 from both sides:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

5. Solve for [tex]\(x\)[/tex]:
- Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to eliminate the negative term on the right:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
- Combine like terms:
[tex]\[
x = 0
\][/tex]

Thus, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].