College

Karissa begins to solve the equation [tex]\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)[/tex]. Her work is correct and is shown below:

\[
\begin{align*}
\frac{1}{2}(x-14)+11 & = \frac{1}{2} x-(x-4) \\
\frac{1}{2} x - 7 + 11 & = \frac{1}{2} x - x + 4 \\
\frac{1}{2} x + 4 & = -\frac{1}{2} x + 4 \\
\end{align*}
\]

When she subtracts 4 from both sides, [tex]\frac{1}{2} x = -\frac{1}{2} x[/tex] results. What is the value of [tex]x[/tex]?

A. [tex]-1[/tex]
B. [tex]-\frac{1}{2}[/tex]
C. [tex]0[/tex]
D. [tex]\frac{1}{2}[/tex]

Answer :

To solve the equation [tex]\(\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)\)[/tex], let's work through it step by step:

1. Distribute and simplify both sides:
- Left side: [tex]\(\frac{1}{2}(x-14) + 11\)[/tex] becomes [tex]\(\frac{1}{2}x - 7 + 11\)[/tex].
- Simplify it further to: [tex]\(\frac{1}{2}x + 4\)[/tex].

- Right side: [tex]\(\frac{1}{2}x - (x - 4)\)[/tex] simplifies to [tex]\(\frac{1}{2}x - x + 4\)[/tex].
- Simplify it to: [tex]\(-\frac{1}{2}x + 4\)[/tex].

2. Set both sides equal:
- Now, you have the equation [tex]\(\frac{1}{2}x + 4 = -\frac{1}{2}x + 4\)[/tex].

3. Subtract 4 from both sides:
- This gives [tex]\(\frac{1}{2}x = -\frac{1}{2}x\)[/tex].

4. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides:
- [tex]\(\frac{1}{2}x + \frac{1}{2}x = 0\)[/tex].
- Simplifies to: [tex]\(x = 0\)[/tex].

So, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].