College

Karissa begins to solve the equation:

[tex]\(\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)\)[/tex]

Her work is shown below:

[tex]
\begin{array}{c}
\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\
\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\
\frac{1}{2} x+4=-\frac{1}{2} x+4
\end{array}
[/tex]

When she subtracts 4 from both sides, [tex]\(\frac{1}{2} x=-\frac{1}{2} x\)[/tex] results. What is the value of [tex]\(x\)[/tex]?

A. [tex]\(-1\)[/tex]

B. [tex]\(\frac{1}{2}\)[/tex]

C. 0

D. [tex]\(\frac{1}{2}\)[/tex]

Answer :

To solve the equation [tex]\( \frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4) \)[/tex], let's follow the steps that Karissa took:

1. Simplify both sides of the equation:

- On the left:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - 7 + 11 = \frac{1}{2}x + 4
\][/tex]

- On the right:
[tex]\[
\frac{1}{2}x - (x-4) = \frac{1}{2}x - x + 4 = -\frac{1}{2}x + 4
\][/tex]

This simplifies our equation to:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

2. Subtract 4 from both sides to isolate terms involving [tex]\( x \)[/tex]:

[tex]\[
\frac{1}{2}x + 4 - 4 = -\frac{1}{2}x + 4 - 4
\][/tex]
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

3. Combine the [tex]\( x \)[/tex]-terms:

Add [tex]\(\frac{1}{2}x\)[/tex] to both sides in order to combine like terms:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
[tex]\[
x = 0
\][/tex]

Therefore, the value of [tex]\( x \)[/tex] is [tex]\(\boxed{0}\)[/tex].