College

Karissa begins to solve the equation:

[tex]\[

\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)

\][/tex]

Her work is correct and is shown below:

[tex]\[

\begin{array}{c}

\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\

\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\

\frac{1}{2} x+4=-\frac{1}{2} x+4

\end{array}

\][/tex]

When she subtracts 4 from both sides, [tex]\(\frac{1}{2} x=-\frac{1}{2} x\)[/tex] results. What is the value of [tex]\(x\)[/tex]?

A. [tex]\(-1\)[/tex]

B. [tex]\(-\frac{1}{2}\)[/tex]

C. 0

D. [tex]\(\frac{1}{2}\)[/tex]

Answer :

Sure! Let's solve the equation step-by-step:

We start with the equation:

[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]

First, we'll simplify both sides of the equation.

1. Distribute on the left side:
[tex]\[
\frac{1}{2} \times (x - 14) = \frac{1}{2}x - \frac{1}{2} \times 14 = \frac{1}{2}x - 7
\][/tex]
So, the left side becomes:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x + 4
\][/tex]

2. Simplify on the right side:
[tex]\[
\frac{1}{2}x - (x - 4) = \frac{1}{2}x - x + 4 = -\frac{1}{2}x + 4
\][/tex]

Now our equation is simplified to:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

3. Subtract 4 from both sides to eliminate the constant part:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

4. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to eliminate the [tex]\(-\frac{1}{2}x\)[/tex] from the right side:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]

5. Combine the [tex]\(x\)[/tex] terms on the left side:
[tex]\[
x = 0
\][/tex]

So, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].