Answer :
Sure, let's solve the equation step-by-step to find the value of [tex]\( x \)[/tex].
We start with the original equation:
[tex]\[
\frac{1}{2}(x-14)+11=\frac{1}{2}x-(x-4)
\][/tex]
Step 1: Distribute the [tex]\(\frac{1}{2}\)[/tex] on the left side:
[tex]\[
\frac{1}{2} \times (x - 14) + 11 = \frac{1}{2}x - \left(x - 4\right)
\][/tex]
This becomes:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]
Step 2: Simplify both sides:
[tex]\[
\frac{1}{2}x + 4 = \frac{1}{2}x - x + 4
\][/tex]
Step 3: Combine like terms. On the right side, the terms [tex]\(\frac{1}{2}x - x\)[/tex] simplify to:
[tex]\[
-\frac{1}{2}x
\][/tex]
So the equation becomes:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
Step 4: Subtract 4 from both sides to get:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
Step 5: Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to combine the [tex]\(x\)[/tex] terms:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = -\frac{1}{2}x + \frac{1}{2}x
\][/tex]
This simplifies to:
[tex]\[
x = 0
\][/tex]
So, the value of [tex]\( x \)[/tex] that satisfies the equation is [tex]\( \boxed{0} \)[/tex].
We start with the original equation:
[tex]\[
\frac{1}{2}(x-14)+11=\frac{1}{2}x-(x-4)
\][/tex]
Step 1: Distribute the [tex]\(\frac{1}{2}\)[/tex] on the left side:
[tex]\[
\frac{1}{2} \times (x - 14) + 11 = \frac{1}{2}x - \left(x - 4\right)
\][/tex]
This becomes:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]
Step 2: Simplify both sides:
[tex]\[
\frac{1}{2}x + 4 = \frac{1}{2}x - x + 4
\][/tex]
Step 3: Combine like terms. On the right side, the terms [tex]\(\frac{1}{2}x - x\)[/tex] simplify to:
[tex]\[
-\frac{1}{2}x
\][/tex]
So the equation becomes:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
Step 4: Subtract 4 from both sides to get:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
Step 5: Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to combine the [tex]\(x\)[/tex] terms:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = -\frac{1}{2}x + \frac{1}{2}x
\][/tex]
This simplifies to:
[tex]\[
x = 0
\][/tex]
So, the value of [tex]\( x \)[/tex] that satisfies the equation is [tex]\( \boxed{0} \)[/tex].