Answer :
Sure! Let's solve the equation step-by-step.
We start with the equation:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]
First, distribute the [tex]\(\frac{1}{2}\)[/tex] on the left side:
[tex]\[
\frac{1}{2}(x) - \frac{1}{2}(14) + 11 = \frac{1}{2}x - (x - 4)
\][/tex]
This simplifies to:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]
Next, combine like terms:
On the left side:
[tex]\[
-7 + 11 = 4
\][/tex]
So, the equation becomes:
[tex]\[
\frac{1}{2}x + 4 = \frac{1}{2}x - x + 4
\][/tex]
Now, get rid of the constant [tex]\(4\)[/tex] on both sides by subtracting [tex]\(4\)[/tex]:
[tex]\[
\frac{1}{2}x = \frac{1}{2}x - x
\][/tex]
Simplify the right side:
[tex]\[
\frac{1}{2}x - x = \frac{1}{2}x - \frac{2}{2}x = -\frac{1}{2}x
\][/tex]
This gives us:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
Now, add [tex]\(\frac{1}{2}x\)[/tex] to both sides to eliminate the variable on one side:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
Combine the terms:
[tex]\[
x = 0
\][/tex]
So, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].
We start with the equation:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]
First, distribute the [tex]\(\frac{1}{2}\)[/tex] on the left side:
[tex]\[
\frac{1}{2}(x) - \frac{1}{2}(14) + 11 = \frac{1}{2}x - (x - 4)
\][/tex]
This simplifies to:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]
Next, combine like terms:
On the left side:
[tex]\[
-7 + 11 = 4
\][/tex]
So, the equation becomes:
[tex]\[
\frac{1}{2}x + 4 = \frac{1}{2}x - x + 4
\][/tex]
Now, get rid of the constant [tex]\(4\)[/tex] on both sides by subtracting [tex]\(4\)[/tex]:
[tex]\[
\frac{1}{2}x = \frac{1}{2}x - x
\][/tex]
Simplify the right side:
[tex]\[
\frac{1}{2}x - x = \frac{1}{2}x - \frac{2}{2}x = -\frac{1}{2}x
\][/tex]
This gives us:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
Now, add [tex]\(\frac{1}{2}x\)[/tex] to both sides to eliminate the variable on one side:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
Combine the terms:
[tex]\[
x = 0
\][/tex]
So, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].