College

Karissa begins to solve the equation [tex]\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)[/tex]. Her work is correct and is shown below:

[tex]\[

\begin{array}{c}

\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\

\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\

\frac{1}{2} x+4=-\frac{1}{2} x+4

\end{array}

\][/tex]

When she subtracts 4 from both sides, [tex]\frac{1}{2} x=-\frac{1}{2} x[/tex] results. What is the value of [tex]x[/tex]?

A. [tex]\(-1\)[/tex]
B. [tex]\(-\frac{1}{2}\)[/tex]
C. [tex]\(0\)[/tex]
D. [tex]\(\frac{1}{2}\)[/tex]

Answer :

Sure, let's work through the solution step-by-step to find the value of [tex]\(x\)[/tex] for the given equation:

1. Start with the equation:
[tex]\[
\frac{1}{2}(x - 14) + 11 = \frac{1}{2}x - (x - 4)
\][/tex]

2. Distribute and simplify both sides:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]
On the left side: [tex]\(\frac{1}{2}x - 7 + 11\)[/tex] simplifies to [tex]\(\frac{1}{2}x + 4\)[/tex].

On the right side, simplify: [tex]\(\frac{1}{2}x - x + 4 = -\frac{1}{2}x + 4\)[/tex].

Now, the equation becomes:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

3. Subtract 4 from both sides of the equation:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

4. Combine like terms:
To get rid of the fractions, you can add [tex]\(\frac{1}{2}x\)[/tex] to both sides:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
This simplifies to:
[tex]\[
x = 0
\][/tex]

Therefore, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].