Answer :
Sure! Let's solve the equation step-by-step:
We start with the given equation:
[tex]\[
\frac{1}{2}(x - 14) + 11 = \frac{1}{2}x - (x - 4)
\][/tex]
Step 1: Distribute and simplify both sides.
- On the left side, distribute the [tex]\(\frac{1}{2}\)[/tex] inside the parentheses:
[tex]\[
\frac{1}{2} \times x - \frac{1}{2} \times 14 + 11 = \frac{1}{2}x - 7 + 11
\][/tex]
Simplify by combining like terms:
[tex]\[
\frac{1}{2}x + 4
\][/tex]
- On the right side, distribute the negative sign inside the parentheses:
[tex]\[
\frac{1}{2}x - x + 4
\][/tex]
Step 2: Set the simplified expressions equal to each other.
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
Step 3: Subtract 4 from both sides to isolate terms with [tex]\(x\)[/tex].
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
Step 4: Combine like terms.
Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to eliminate the [tex]\(-\frac{1}{2}x\)[/tex] term from the right side:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
Combine like terms:
[tex]\[
x = 0
\][/tex]
Thus, the solution to the equation is [tex]\(x = 0\)[/tex].
We start with the given equation:
[tex]\[
\frac{1}{2}(x - 14) + 11 = \frac{1}{2}x - (x - 4)
\][/tex]
Step 1: Distribute and simplify both sides.
- On the left side, distribute the [tex]\(\frac{1}{2}\)[/tex] inside the parentheses:
[tex]\[
\frac{1}{2} \times x - \frac{1}{2} \times 14 + 11 = \frac{1}{2}x - 7 + 11
\][/tex]
Simplify by combining like terms:
[tex]\[
\frac{1}{2}x + 4
\][/tex]
- On the right side, distribute the negative sign inside the parentheses:
[tex]\[
\frac{1}{2}x - x + 4
\][/tex]
Step 2: Set the simplified expressions equal to each other.
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
Step 3: Subtract 4 from both sides to isolate terms with [tex]\(x\)[/tex].
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
Step 4: Combine like terms.
Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to eliminate the [tex]\(-\frac{1}{2}x\)[/tex] term from the right side:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
Combine like terms:
[tex]\[
x = 0
\][/tex]
Thus, the solution to the equation is [tex]\(x = 0\)[/tex].