Answer :
Let's solve the equation step-by-step:
The equation given in Karissa's work is:
[tex]\[
\frac{1}{2}(x - 14) + 11 = \frac{1}{2}x - (x - 4)
\][/tex]
Step 1: Expand both sides of the equation.
On the left side:
[tex]\[
\frac{1}{2}(x - 14) + 11 = \frac{1}{2}x - 7 + 11
\][/tex]
This simplifies to:
[tex]\[
\frac{1}{2}x + 4
\][/tex]
On the right side:
[tex]\[
\frac{1}{2}x - (x - 4) = \frac{1}{2}x - x + 4
\][/tex]
This simplifies to:
[tex]\[
-\frac{1}{2}x + 4
\][/tex]
So, we now have the equation:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
Step 2: Subtract 4 from both sides.
This gives us:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
Step 3: Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to combine like terms.
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
Simplifying the left side:
[tex]\[
x = 0
\][/tex]
Therefore, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].
The equation given in Karissa's work is:
[tex]\[
\frac{1}{2}(x - 14) + 11 = \frac{1}{2}x - (x - 4)
\][/tex]
Step 1: Expand both sides of the equation.
On the left side:
[tex]\[
\frac{1}{2}(x - 14) + 11 = \frac{1}{2}x - 7 + 11
\][/tex]
This simplifies to:
[tex]\[
\frac{1}{2}x + 4
\][/tex]
On the right side:
[tex]\[
\frac{1}{2}x - (x - 4) = \frac{1}{2}x - x + 4
\][/tex]
This simplifies to:
[tex]\[
-\frac{1}{2}x + 4
\][/tex]
So, we now have the equation:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
Step 2: Subtract 4 from both sides.
This gives us:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
Step 3: Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to combine like terms.
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
Simplifying the left side:
[tex]\[
x = 0
\][/tex]
Therefore, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].