High School

Karissa begins to solve the equation [tex]\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)[/tex]. Her work is correct and is shown below:

[tex]
\begin{array}{c}
\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\
\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\
\frac{1}{2} x+4=-\frac{1}{2} x+4
\end{array}
[/tex]

When she subtracts 4 from both sides, [tex]\frac{1}{2} x=-\frac{1}{2} x[/tex] results. What is the value of [tex]x[/tex]?

A. [tex]-1[/tex]
B. [tex]\frac{1}{2}[/tex]
C. 0
D. [tex]\frac{1}{2}[/tex]

Answer :

To find the value of [tex]\( x \)[/tex] in the equation [tex]\(\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)\)[/tex], let's go through the steps that Karissa followed:

1. Distribute and Simplify:
- Left side: [tex]\(\frac{1}{2}(x - 14) + 11\)[/tex] becomes [tex]\(\frac{1}{2}x - 7 + 11\)[/tex].
- Right side: [tex]\(\frac{1}{2}x - (x - 4)\)[/tex] simplifies to [tex]\(\frac{1}{2}x - x + 4\)[/tex].

2. Combine Like Terms:
- Left side: [tex]\(\frac{1}{2}x - 7 + 11\)[/tex] simplifies to [tex]\(\frac{1}{2}x + 4\)[/tex].
- Right side: [tex]\(\frac{1}{2}x - x + 4\)[/tex] becomes [tex]\(-\frac{1}{2}x + 4\)[/tex].

3. Set the Simplified Equation:
- Now, the equation is [tex]\(\frac{1}{2}x + 4 = -\frac{1}{2}x + 4\)[/tex].

4. Subtract 4 from Both Sides:
- This results in [tex]\(\frac{1}{2}x = -\frac{1}{2}x\)[/tex].

5. Add [tex]\(\frac{1}{2}x\)[/tex] to Both Sides:
- [tex]\(\frac{1}{2}x + \frac{1}{2}x = 0\)[/tex].

6. Simplify:
- Combining the terms gives us [tex]\(x = 0\)[/tex].

So, the value of [tex]\( x \)[/tex] is [tex]\( 0 \)[/tex].