Karissa begins to solve the equation [tex]\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)[/tex]. Her work is correct and is shown below:

[tex]
\begin{array}{c}
\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\
\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\
\frac{1}{2} x+4=-\frac{1}{2} x+4
\end{array}
[/tex]

When she subtracts 4 from both sides, [tex]\frac{1}{2} x=-\frac{1}{2} x[/tex] results. What is the value of [tex]x[/tex]?

A. -1
B. [tex]\frac{1}{2}[/tex]
C. 0
D. [tex]\frac{1}{2}[/tex]

Answer :

Let's solve the equation step by step just like Karissa did:

1. The equation begins as:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]

2. Distribute [tex]\(\frac{1}{2}\)[/tex] on the left side:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]

3. Simplify both sides:
- On the left side, combine [tex]\(-7\)[/tex] and [tex]\(11\)[/tex]:
[tex]\[
\frac{1}{2}x + 4
\][/tex]
- On the right side, combine like terms [tex]\(\frac{1}{2}x - x\)[/tex]:
[tex]\[
-\frac{1}{2}x + 4
\][/tex]

4. This gives us the simplified equation:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

5. Subtract [tex]\(4\)[/tex] from both sides to isolate the terms involving [tex]\(x\)[/tex]:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

6. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to get all [tex]\(x\)[/tex] terms on one side:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]

7. Combine the terms:
[tex]\[
x = 0
\][/tex]

Thus, the value of [tex]\(x\)[/tex] that satisfies the equation is [tex]\(\boxed{0}\)[/tex].