Answer :
To solve the equation [tex]\(\frac{1}{2} x = -\frac{1}{2} x\)[/tex], we can go through the following steps:
1. Add [tex]\(\frac{1}{2} x\)[/tex] to both sides of the equation:
[tex]\[
\frac{1}{2} x + \frac{1}{2} x = -\frac{1}{2} x + \frac{1}{2} x
\][/tex]
2. Simplify the equation:
On the left side, [tex]\(\frac{1}{2} x + \frac{1}{2} x\)[/tex] simplifies to [tex]\(x\)[/tex].
On the right side, [tex]\(-\frac{1}{2} x + \frac{1}{2} x\)[/tex] simplifies to [tex]\(0\)[/tex].
3. The simplified equation is:
[tex]\[
x = 0
\][/tex]
Therefore, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex]. This means that when [tex]\(\frac{1}{2} x - 7 + 11\)[/tex] equals [tex]\(\frac{1}{2} x - x + 4\)[/tex], both sides are equal when [tex]\(x\)[/tex] is [tex]\(0\)[/tex].
1. Add [tex]\(\frac{1}{2} x\)[/tex] to both sides of the equation:
[tex]\[
\frac{1}{2} x + \frac{1}{2} x = -\frac{1}{2} x + \frac{1}{2} x
\][/tex]
2. Simplify the equation:
On the left side, [tex]\(\frac{1}{2} x + \frac{1}{2} x\)[/tex] simplifies to [tex]\(x\)[/tex].
On the right side, [tex]\(-\frac{1}{2} x + \frac{1}{2} x\)[/tex] simplifies to [tex]\(0\)[/tex].
3. The simplified equation is:
[tex]\[
x = 0
\][/tex]
Therefore, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex]. This means that when [tex]\(\frac{1}{2} x - 7 + 11\)[/tex] equals [tex]\(\frac{1}{2} x - x + 4\)[/tex], both sides are equal when [tex]\(x\)[/tex] is [tex]\(0\)[/tex].