College

Karissa begins to solve the equation [tex]\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)[/tex]. Her work is correct and is shown below.

[tex]
\begin{array}{c}
\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\
\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\
\frac{1}{2} x+4=-\frac{1}{2} x+4 \\
\end{array}
[/tex]

When she subtracts 4 from both sides, [tex]\frac{1}{2} x=-\frac{1}{2} x[/tex] results. What is the value of [tex]x[/tex]?

A. -1
B. -\frac{1}{2}
C. 0
D. \frac{1}{2}

Answer :

To solve the equation [tex]\(\frac{1}{2} x = -\frac{1}{2} x\)[/tex], we can go through the following steps:

1. Add [tex]\(\frac{1}{2} x\)[/tex] to both sides of the equation:

[tex]\[
\frac{1}{2} x + \frac{1}{2} x = -\frac{1}{2} x + \frac{1}{2} x
\][/tex]

2. Simplify the equation:

On the left side, [tex]\(\frac{1}{2} x + \frac{1}{2} x\)[/tex] simplifies to [tex]\(x\)[/tex].

On the right side, [tex]\(-\frac{1}{2} x + \frac{1}{2} x\)[/tex] simplifies to [tex]\(0\)[/tex].

3. The simplified equation is:

[tex]\[
x = 0
\][/tex]

Therefore, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex]. This means that when [tex]\(\frac{1}{2} x - 7 + 11\)[/tex] equals [tex]\(\frac{1}{2} x - x + 4\)[/tex], both sides are equal when [tex]\(x\)[/tex] is [tex]\(0\)[/tex].