Answer :
Sure! Let's solve the equation step-by-step to find the value of [tex]\( x \)[/tex].
Karissa starts with the equation:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2} x - (x-4)
\][/tex]
Step 1: Simplify both sides.
First, distribute the [tex]\(\frac{1}{2}\)[/tex] on the left side of the equation:
[tex]\[
\frac{1}{2} \cdot x - \frac{1}{2} \cdot 14 + 11 = \frac{1}{2} x - x + 4
\][/tex]
So it simplifies to:
[tex]\[
\frac{1}{2} x - 7 + 11 = \frac{1}{2} x - x + 4
\][/tex]
Combine like terms on both sides:
On the left side: [tex]\(-7 + 11 = 4\)[/tex], giving us:
[tex]\[
\frac{1}{2} x + 4
\][/tex]
On the right side:
[tex]\[
\frac{1}{2} x - x + 4 = -\frac{1}{2} x + 4
\][/tex]
The equation now becomes:
[tex]\[
\frac{1}{2} x + 4 = -\frac{1}{2} x + 4
\][/tex]
Step 2: Subtract 4 from both sides.
After subtracting 4 from both sides, the equation is:
[tex]\[
\frac{1}{2} x = -\frac{1}{2} x
\][/tex]
Step 3: Combine all [tex]\( x \)[/tex] terms.
Add [tex]\(\frac{1}{2} x\)[/tex] to both sides to isolate [tex]\( x \)[/tex]:
[tex]\[
\frac{1}{2} x + \frac{1}{2} x = 0
\][/tex]
This simplifies to:
[tex]\[
x = 0
\][/tex]
Therefore, the value of [tex]\( x \)[/tex] is [tex]\(\boxed{0}\)[/tex].
Karissa starts with the equation:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2} x - (x-4)
\][/tex]
Step 1: Simplify both sides.
First, distribute the [tex]\(\frac{1}{2}\)[/tex] on the left side of the equation:
[tex]\[
\frac{1}{2} \cdot x - \frac{1}{2} \cdot 14 + 11 = \frac{1}{2} x - x + 4
\][/tex]
So it simplifies to:
[tex]\[
\frac{1}{2} x - 7 + 11 = \frac{1}{2} x - x + 4
\][/tex]
Combine like terms on both sides:
On the left side: [tex]\(-7 + 11 = 4\)[/tex], giving us:
[tex]\[
\frac{1}{2} x + 4
\][/tex]
On the right side:
[tex]\[
\frac{1}{2} x - x + 4 = -\frac{1}{2} x + 4
\][/tex]
The equation now becomes:
[tex]\[
\frac{1}{2} x + 4 = -\frac{1}{2} x + 4
\][/tex]
Step 2: Subtract 4 from both sides.
After subtracting 4 from both sides, the equation is:
[tex]\[
\frac{1}{2} x = -\frac{1}{2} x
\][/tex]
Step 3: Combine all [tex]\( x \)[/tex] terms.
Add [tex]\(\frac{1}{2} x\)[/tex] to both sides to isolate [tex]\( x \)[/tex]:
[tex]\[
\frac{1}{2} x + \frac{1}{2} x = 0
\][/tex]
This simplifies to:
[tex]\[
x = 0
\][/tex]
Therefore, the value of [tex]\( x \)[/tex] is [tex]\(\boxed{0}\)[/tex].