College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Karissa begins to solve the equation:

[tex]
\[
\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)
\]
[/tex]

Her work is correct and is shown below:

[tex]
\[
\begin{array}{c}
\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\
\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\
\frac{1}{2} x+4=-\frac{1}{2} x+4
\end{array}
\]
[/tex]

When she subtracts 4 from both sides, [tex]\(\frac{1}{2} x=-\frac{1}{2} x\)[/tex] results. What is the value of [tex]\(x\)[/tex]?

A. [tex]\(-1\)[/tex]

B. [tex]\(-\frac{1}{2}\)[/tex]

C. [tex]\(0\)[/tex]

D. [tex]\(\frac{1}{2}\)[/tex]

Answer :

Sure! Let's solve the equation step-by-step to find the value of [tex]\( x \)[/tex].

Karissa starts with the equation:

[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2} x - (x-4)
\][/tex]

Step 1: Simplify both sides.

First, distribute the [tex]\(\frac{1}{2}\)[/tex] on the left side of the equation:

[tex]\[
\frac{1}{2} \cdot x - \frac{1}{2} \cdot 14 + 11 = \frac{1}{2} x - x + 4
\][/tex]

So it simplifies to:

[tex]\[
\frac{1}{2} x - 7 + 11 = \frac{1}{2} x - x + 4
\][/tex]

Combine like terms on both sides:

On the left side: [tex]\(-7 + 11 = 4\)[/tex], giving us:
[tex]\[
\frac{1}{2} x + 4
\][/tex]

On the right side:
[tex]\[
\frac{1}{2} x - x + 4 = -\frac{1}{2} x + 4
\][/tex]

The equation now becomes:

[tex]\[
\frac{1}{2} x + 4 = -\frac{1}{2} x + 4
\][/tex]

Step 2: Subtract 4 from both sides.

After subtracting 4 from both sides, the equation is:

[tex]\[
\frac{1}{2} x = -\frac{1}{2} x
\][/tex]

Step 3: Combine all [tex]\( x \)[/tex] terms.

Add [tex]\(\frac{1}{2} x\)[/tex] to both sides to isolate [tex]\( x \)[/tex]:

[tex]\[
\frac{1}{2} x + \frac{1}{2} x = 0
\][/tex]

This simplifies to:

[tex]\[
x = 0
\][/tex]

Therefore, the value of [tex]\( x \)[/tex] is [tex]\(\boxed{0}\)[/tex].