College

Karissa begins to solve the equation [tex]\(\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)\)[/tex]. Her work is correct and is shown below.

[tex]\[

\begin{array}{c}

\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\

\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\

\frac{1}{2} x+4=-\frac{1}{2} x+4

\end{array}

\][/tex]

When she subtracts 4 from both sides, [tex]\(\frac{1}{2} x=-\frac{1}{2} x\)[/tex] results. What is the value of [tex]\(x\)[/tex]?

A. [tex]\(-1\)[/tex]

B. [tex]\(\frac{1}{2}\)[/tex]

C. [tex]\(0\)[/tex]

D. [tex]\(\frac{1}{2}\)[/tex]

Answer :

To solve the equation [tex]\(\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)\)[/tex], let's work through the steps Karissa took:

1. Distribute and simplify both sides:

- The left side: [tex]\(\frac{1}{2}(x - 14) + 11\)[/tex] becomes [tex]\(\frac{1}{2}x - 7 + 11\)[/tex], which simplifies to [tex]\(\frac{1}{2}x + 4\)[/tex].

- The right side: [tex]\(\frac{1}{2}x - (x - 4)\)[/tex] becomes [tex]\(\frac{1}{2}x - x + 4\)[/tex]. Simplifying inside the parentheses first gives us [tex]\(\frac{1}{2}x - x + 4\)[/tex].

2. Combine the terms:

- The equation becomes [tex]\(\frac{1}{2}x + 4 = -\frac{1}{2}x + 4\)[/tex].

3. Subtract 4 from both sides:

- [tex]\(\frac{1}{2}x + 4 - 4 = -\frac{1}{2}x + 4 - 4\)[/tex] simplifies to [tex]\(\frac{1}{2}x = -\frac{1}{2}x\)[/tex].

4. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides:

- [tex]\(\frac{1}{2}x + \frac{1}{2}x = -\frac{1}{2}x + \frac{1}{2}x\)[/tex] simplifies to [tex]\(x = 0\)[/tex].

So, the value of [tex]\(x\)[/tex] that satisfies the equation is [tex]\(0\)[/tex].