Answer :
Sure, let's solve the equation step by step based on Karissa's work:
The original equation is:
[tex]\[
\frac{1}{2}(x - 14) + 11 = \frac{1}{2}x - (x - 4)
\][/tex]
1. Distribute [tex]\(\frac{1}{2}\)[/tex] on the left-hand side:
[tex]\[
\frac{1}{2}x - \frac{1}{2} \cdot 14 + 11 = \frac{1}{2}x - (x - 4)
\][/tex]
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]
2. Simplify both sides:
[tex]\[
\frac{1}{2}x + 4 = \frac{1}{2}x - x + 4
\][/tex]
3. Combine like terms on the right side:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
4. Subtract 4 from both sides:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
5. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to combine like terms:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
[tex]\[
x = 0
\][/tex]
So, the value of [tex]\(x\)[/tex] is:
[tex]\[
\boxed{0}
\][/tex]
The original equation is:
[tex]\[
\frac{1}{2}(x - 14) + 11 = \frac{1}{2}x - (x - 4)
\][/tex]
1. Distribute [tex]\(\frac{1}{2}\)[/tex] on the left-hand side:
[tex]\[
\frac{1}{2}x - \frac{1}{2} \cdot 14 + 11 = \frac{1}{2}x - (x - 4)
\][/tex]
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]
2. Simplify both sides:
[tex]\[
\frac{1}{2}x + 4 = \frac{1}{2}x - x + 4
\][/tex]
3. Combine like terms on the right side:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
4. Subtract 4 from both sides:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
5. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to combine like terms:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
[tex]\[
x = 0
\][/tex]
So, the value of [tex]\(x\)[/tex] is:
[tex]\[
\boxed{0}
\][/tex]