College

Karissa begins to solve the equation

\[ \frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \]

Her work is correct and is shown below.

\[
\begin{array}{c}
\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\
\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\
\frac{1}{2} x+4=-\frac{1}{2} x+4
\end{array}
\]

When she subtracts 4 from both sides, \(\frac{1}{2} x=-\frac{1}{2} x\) results. What is the value of \(x\)?

A. \(-1\)

B. \(-\frac{1}{2}\)

C. 0

D. \(\frac{1}{2}\)

Answer :

Let's work through the problem step by step to solve for [tex]\( x \)[/tex]:

The original equation is:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2} x - (x-4)
\][/tex]

First, distribute the fractions and simplify both sides of the equation:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]

Combine the constants on the left side:
[tex]\[
\frac{1}{2}x + 4 = \frac{1}{2}x - x + 4
\][/tex]

Next, simplify the right side by combining like terms:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

Next, subtract 4 from both sides to isolate the [tex]\( x \)[/tex] terms:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

Now, add [tex]\( \frac{1}{2}x \)[/tex] to both sides to gather all [tex]\( x \)[/tex] terms on the left side:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]

Combine the [tex]\( x \)[/tex] terms:
[tex]\[
x = 0
\][/tex]

Thus, the value of [tex]\( x \)[/tex] is:
[tex]\[
\boxed{0}
\][/tex]