Answer :
To solve this problem, we need to understand how many calories Jessica burns during her workout and how this relates to the equation options given.
Here's the breakdown:
1. Total Calories Burned: Jessica burns 480 calories during the entire workout.
2. Calories Burned Lifting Weights: She burns 150 calories lifting weights.
3. Calories Burned Walking: She walks on the treadmill for 30 minutes, burning [tex]\( c \)[/tex] calories per minute.
4. Equation Setup:
- The calories burned from walking can be represented as [tex]\( 30c \)[/tex] because she walks for 30 minutes and burns [tex]\( c \)[/tex] calories per minute.
- The total calories burned is the sum of calories burned lifting weights and calories burned walking. Therefore, the equation representing this situation is:
[tex]\[
150 + 30c = 480
\][/tex]
This equation sums the calories burned lifting weights (150) with the calories burned walking ([tex]\( 30c \)[/tex]) to equal the total calories burned (480).
So, the correct equation that represents the situation is [tex]\( 150 + 30c = 480 \)[/tex].
Here's the breakdown:
1. Total Calories Burned: Jessica burns 480 calories during the entire workout.
2. Calories Burned Lifting Weights: She burns 150 calories lifting weights.
3. Calories Burned Walking: She walks on the treadmill for 30 minutes, burning [tex]\( c \)[/tex] calories per minute.
4. Equation Setup:
- The calories burned from walking can be represented as [tex]\( 30c \)[/tex] because she walks for 30 minutes and burns [tex]\( c \)[/tex] calories per minute.
- The total calories burned is the sum of calories burned lifting weights and calories burned walking. Therefore, the equation representing this situation is:
[tex]\[
150 + 30c = 480
\][/tex]
This equation sums the calories burned lifting weights (150) with the calories burned walking ([tex]\( 30c \)[/tex]) to equal the total calories burned (480).
So, the correct equation that represents the situation is [tex]\( 150 + 30c = 480 \)[/tex].