College

Jerald jumped from a bungee tower. If the equation that models his height, in feet, is [tex]h = -16t^2 + 729[/tex], where [tex]t[/tex] is the time in seconds, for which interval of time is he less than 104 feet above the ground?

A. [tex]t > 6.25[/tex]
B. [tex]-6.25 < t < 6.25[/tex]
C. [tex]t < 6.25[/tex]
D. [tex]0 \leq t \leq 8.25[/tex]

Answer :

To find the interval during which Jerald's height is less than 104 feet, we need to solve the inequality given by the equation for his height:

[tex]\[ h = -16t^2 + 729 \][/tex]

We want to determine when this height is less than 104 feet:

[tex]\[ -16t^2 + 729 < 104 \][/tex]

Let's solve this inequality step-by-step:

1. Subtract 104 from both sides:
[tex]\[
-16t^2 + 729 - 104 < 0
\][/tex]

This simplifies to:
[tex]\[
-16t^2 + 625 < 0
\][/tex]

2. Rearrange the terms:
[tex]\[
625 - 16t^2 < 0
\][/tex]

3. Multiply everything by -1 (this reverses the inequality):
[tex]\[
16t^2 - 625 > 0
\][/tex]

4. Factor the quadratic expression:
[tex]\[
(4t - 25)(4t + 25) > 0
\][/tex]

5. Find the critical points by solving [tex]\(4t - 25 = 0\)[/tex] and [tex]\(4t + 25 = 0\)[/tex]:
[tex]\[
4t - 25 = 0 \Rightarrow t = \frac{25}{4} = 6.25
\][/tex]
[tex]\[
4t + 25 = 0 \Rightarrow t = -\frac{25}{4} = -6.25
\][/tex]

6. Determine the intervals to test the inequality:
The critical points divide the number line into three intervals:
[tex]\[
(-\infty, -6.25), \quad (-6.25, 6.25), \quad (6.25, \infty)
\][/tex]

7. Test a point from each interval to see where the inequality holds:

- Interval [tex]\((-6.25, 6.25)\)[/tex]:
Choose [tex]\(t = 0\)[/tex]:
[tex]\[
16(0)^2 - 625 = -625 \Rightarrow \text{False}
\][/tex]

- Interval [tex]\((6.25, \infty)\)[/tex]:
Choose [tex]\(t = 7\)[/tex]:
[tex]\[
16(7)^2 - 625 = 784 - 625 = 159 > 0 \Rightarrow \text{True}
\][/tex]

- Interval [tex]\((-\infty, -6.25)\)[/tex]:
Choose [tex]\(t = -7\)[/tex]:
[tex]\[
16(-7)^2 - 625 = 784 - 625 = 159 > 0 \Rightarrow \text{True}
\][/tex]

8. Conclusion:
Jerald is less than 104 feet above the ground for [tex]\(t > 6.25\)[/tex].

Thus, the correct answer is:
[tex]\[ t > 6.25 \][/tex]