Answer :
To determine the number of ways to choose 12 paintings from a collection of 20, we use the combination formula:
[tex]$$
\binom{n}{r} = \frac{n!}{r!(n-r)!}
$$[/tex]
Here, [tex]$n = 20$[/tex] and [tex]$r = 12$[/tex], so the formula becomes:
[tex]$$
\binom{20}{12} = \frac{20!}{12!(20-12)!} = \frac{20!}{12! \times 8!}
$$[/tex]
The values of the factorials are:
- [tex]$20! = 2432902008176640000$[/tex]
- [tex]$12! = 479001600$[/tex]
- [tex]$8! = 40320$[/tex]
Substituting these into the formula:
[tex]$$
\binom{20}{12} = \frac{2432902008176640000}{479001600 \times 40320} = 125970
$$[/tex]
Thus, the number of ways to select 12 paintings out of 20 is:
[tex]$$
\boxed{125970}
$$[/tex]
[tex]$$
\binom{n}{r} = \frac{n!}{r!(n-r)!}
$$[/tex]
Here, [tex]$n = 20$[/tex] and [tex]$r = 12$[/tex], so the formula becomes:
[tex]$$
\binom{20}{12} = \frac{20!}{12!(20-12)!} = \frac{20!}{12! \times 8!}
$$[/tex]
The values of the factorials are:
- [tex]$20! = 2432902008176640000$[/tex]
- [tex]$12! = 479001600$[/tex]
- [tex]$8! = 40320$[/tex]
Substituting these into the formula:
[tex]$$
\binom{20}{12} = \frac{2432902008176640000}{479001600 \times 40320} = 125970
$$[/tex]
Thus, the number of ways to select 12 paintings out of 20 is:
[tex]$$
\boxed{125970}
$$[/tex]