College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ In Exercises 44-45, perform the operation.

44. Add [tex]$2x^3 - 5x^2 + 10x - 7$[/tex] and [tex][tex]$4x^2 - 7x - 2$[/tex][/tex].

45. Subtract [tex]$9x^4 - 11x^2 + 16$[/tex] from [tex]$6x^4 - 20x^2$[/tex].

Answer :

Sure, let's solve each problem step by step.

### Problem 44: Add [tex]\(2x^3 - 5x^2 + 10x - 7\)[/tex] and [tex]\(4x^2 - 7x - 2\)[/tex]

1. Write down the polynomials:
[tex]\[(2x^3 - 5x^2 + 10x - 7)\][/tex]
[tex]\[(4x^2 - 7x - 2)\][/tex]

2. Align the polynomials by their like terms:
[tex]\[2x^3 - 5x^2 + 10x - 7\][/tex]
[tex]\[0x^3 + 4x^2 - 7x - 2\][/tex]

3. Add the coefficients of like terms:
- [tex]\(x^3\)[/tex] term: [tex]\(2\)[/tex]
- [tex]\(x^2\)[/tex] term: [tex]\(-5 + 4 = -1\)[/tex]
- [tex]\(x\)[/tex] term: [tex]\(10 - 7 = 3\)[/tex]
- Constant term: [tex]\(-7 - 2 = -9\)[/tex]

After adding the polynomials, we get:
[tex]\[2x^3 - x^2 + 3x - 9\][/tex]

So, the result is:
[tex]\[\boxed{2x^3 - x^2 + 3x - 9}\][/tex]

### Problem 45: Subtract [tex]\(9x^4 - 11x^2 + 16\)[/tex] from [tex]\(6x^4 - 20x^2\)[/tex]

1. Write down the polynomials:
[tex]\[(6x^4 - 20x^2)\][/tex]
[tex]\[(9x^4 - 11x^2 + 16)\][/tex]

2. Align the polynomials by their like terms:
[tex]\[6x^4 + 0x^3 - 20x^2 + 0x + 0\][/tex]
[tex]\[9x^4 + 0x^3 - 11x^2 + 0x + 16\][/tex]

3. Subtract the coefficients of like terms:
- [tex]\(x^4\)[/tex] term: [tex]\(6 - 9 = -3\)[/tex]
- [tex]\(x^2\)[/tex] term: [tex]\(-20 - (-11) = -20 + 11 = -9\)[/tex]
- Constant term: [tex]\(0 - 16 = -16\)[/tex] (since the second polynomial has a constant term but the first does not)

After performing the subtraction, we get:
[tex]\[-3x^4 - 9x^2 - 16\][/tex]

So, the result is:
[tex]\[\boxed{-3x^4 - 9x^2 - 16}\][/tex]

These are the final results for the given problems.