Answer :
To calculate the solubility product, [tex]\( K_{\text{sp}} \)[/tex], for [tex]\( \text{Ag}_2\text{SO}_4 \)[/tex], we'll follow these steps:
1. Understand the Dissolution Process:
- When [tex]\( \text{Ag}_2\text{SO}_4 \)[/tex] dissolves in water, it dissociates according to the following equation:
[tex]\[
\text{Ag}_2\text{SO}_4(s) \rightleftharpoons 2\text{Ag}^+(aq) + \text{SO}_4^{2-}(aq)
\][/tex]
2. Identify the Ion Concentrations:
- According to the problem, the concentration of silver ions, [tex]\([ \text{Ag}^+ ]\)[/tex], is [tex]\(3.11 \times 10^{-2} \, M\)[/tex].
- The concentration of sulfate ions, [tex]\([ \text{SO}_4^{2-} ]\)[/tex], is [tex]\(1.55 \times 10^{-2} \, M\)[/tex].
3. Write the Expression for [tex]\( K_{\text{sp}} \)[/tex]:
- The solubility product, [tex]\( K_{\text{sp}} \)[/tex], is given by the formula:
[tex]\[
K_{\text{sp}} = [\text{Ag}^+]^2 \times [\text{SO}_4^{2-}]
\][/tex]
4. Substitute the Known Values:
- Substitute the given concentrations into the [tex]\( K_{\text{sp}} \)[/tex] expression:
[tex]\[
K_{\text{sp}} = (3.11 \times 10^{-2})^2 \times (1.55 \times 10^{-2})
\][/tex]
5. Calculate [tex]\( K_{\text{sp}} \)[/tex]:
- First, calculate [tex]\((3.11 \times 10^{-2})^2\)[/tex]:
[tex]\[
(3.11 \times 10^{-2})^2 = 9.6721 \times 10^{-4}
\][/tex]
- Now, multiply by [tex]\((1.55 \times 10^{-2})\)[/tex] to find [tex]\( K_{\text{sp}} \)[/tex]:
[tex]\[
K_{\text{sp}} = 9.6721 \times 10^{-4} \times 1.55 \times 10^{-2} = 1.4991755 \times 10^{-5}
\][/tex]
So, the solubility product, [tex]\( K_{\text{sp}} \)[/tex], for [tex]\( \text{Ag}_2\text{SO}_4 \)[/tex] is [tex]\( 1.4991755 \times 10^{-5} \)[/tex].
1. Understand the Dissolution Process:
- When [tex]\( \text{Ag}_2\text{SO}_4 \)[/tex] dissolves in water, it dissociates according to the following equation:
[tex]\[
\text{Ag}_2\text{SO}_4(s) \rightleftharpoons 2\text{Ag}^+(aq) + \text{SO}_4^{2-}(aq)
\][/tex]
2. Identify the Ion Concentrations:
- According to the problem, the concentration of silver ions, [tex]\([ \text{Ag}^+ ]\)[/tex], is [tex]\(3.11 \times 10^{-2} \, M\)[/tex].
- The concentration of sulfate ions, [tex]\([ \text{SO}_4^{2-} ]\)[/tex], is [tex]\(1.55 \times 10^{-2} \, M\)[/tex].
3. Write the Expression for [tex]\( K_{\text{sp}} \)[/tex]:
- The solubility product, [tex]\( K_{\text{sp}} \)[/tex], is given by the formula:
[tex]\[
K_{\text{sp}} = [\text{Ag}^+]^2 \times [\text{SO}_4^{2-}]
\][/tex]
4. Substitute the Known Values:
- Substitute the given concentrations into the [tex]\( K_{\text{sp}} \)[/tex] expression:
[tex]\[
K_{\text{sp}} = (3.11 \times 10^{-2})^2 \times (1.55 \times 10^{-2})
\][/tex]
5. Calculate [tex]\( K_{\text{sp}} \)[/tex]:
- First, calculate [tex]\((3.11 \times 10^{-2})^2\)[/tex]:
[tex]\[
(3.11 \times 10^{-2})^2 = 9.6721 \times 10^{-4}
\][/tex]
- Now, multiply by [tex]\((1.55 \times 10^{-2})\)[/tex] to find [tex]\( K_{\text{sp}} \)[/tex]:
[tex]\[
K_{\text{sp}} = 9.6721 \times 10^{-4} \times 1.55 \times 10^{-2} = 1.4991755 \times 10^{-5}
\][/tex]
So, the solubility product, [tex]\( K_{\text{sp}} \)[/tex], for [tex]\( \text{Ag}_2\text{SO}_4 \)[/tex] is [tex]\( 1.4991755 \times 10^{-5} \)[/tex].