Answer :
To solve the expression [tex]\(-3b^2 + 25\)[/tex] when [tex]\(b = 7\)[/tex], follow these steps:
1. Plug in the value of [tex]\(b\)[/tex]:
Substitute [tex]\(7\)[/tex] for [tex]\(b\)[/tex] in the expression. So, the expression becomes:
[tex]\(-3 \times (7)^2 + 25\)[/tex].
2. Calculate [tex]\(b^2\)[/tex]:
First, calculate [tex]\(7^2\)[/tex]:
[tex]\(7 \times 7 = 49\)[/tex].
3. Multiply by [tex]\(-3\)[/tex]:
Next, multiply the result by [tex]\(-3\)[/tex]:
[tex]\(-3 \times 49 = -147\)[/tex].
4. Add 25:
Finally, add 25 to [tex]\(-147\)[/tex]:
[tex]\(-147 + 25 = -122\)[/tex].
Therefore, the value of the expression when [tex]\(b = 7\)[/tex] is [tex]\(-122\)[/tex].
The correct answer is C) -122.
1. Plug in the value of [tex]\(b\)[/tex]:
Substitute [tex]\(7\)[/tex] for [tex]\(b\)[/tex] in the expression. So, the expression becomes:
[tex]\(-3 \times (7)^2 + 25\)[/tex].
2. Calculate [tex]\(b^2\)[/tex]:
First, calculate [tex]\(7^2\)[/tex]:
[tex]\(7 \times 7 = 49\)[/tex].
3. Multiply by [tex]\(-3\)[/tex]:
Next, multiply the result by [tex]\(-3\)[/tex]:
[tex]\(-3 \times 49 = -147\)[/tex].
4. Add 25:
Finally, add 25 to [tex]\(-147\)[/tex]:
[tex]\(-147 + 25 = -122\)[/tex].
Therefore, the value of the expression when [tex]\(b = 7\)[/tex] is [tex]\(-122\)[/tex].
The correct answer is C) -122.