Answer :
To solve the expression [tex]\(-3b^2 + 25\)[/tex] when [tex]\(b = 7\)[/tex], follow these steps:
1. Substitute the value of [tex]\(b = 7\)[/tex] into the expression.
[tex]\[
-3b^2 + 25 \rightarrow -3(7)^2 + 25
\][/tex]
2. Calculate the square of 7:
[tex]\[
7^2 = 49
\][/tex]
3. Multiply 49 by -3:
[tex]\[
-3 \times 49 = -147
\][/tex]
4. Add 25 to -147:
[tex]\[
-147 + 25 = -122
\][/tex]
So, the value of the expression [tex]\(-3b^2 + 25\)[/tex] when [tex]\(b = 7\)[/tex] is [tex]\(-122\)[/tex].
Therefore, the correct answer is:
[tex]\[
\boxed{-122}
\][/tex]
Since -122 is not listed among the answer choices (A, B, C, D), let's check the possible typo in the options, but our calculated result is [tex]\(-122\)[/tex].
1. Substitute the value of [tex]\(b = 7\)[/tex] into the expression.
[tex]\[
-3b^2 + 25 \rightarrow -3(7)^2 + 25
\][/tex]
2. Calculate the square of 7:
[tex]\[
7^2 = 49
\][/tex]
3. Multiply 49 by -3:
[tex]\[
-3 \times 49 = -147
\][/tex]
4. Add 25 to -147:
[tex]\[
-147 + 25 = -122
\][/tex]
So, the value of the expression [tex]\(-3b^2 + 25\)[/tex] when [tex]\(b = 7\)[/tex] is [tex]\(-122\)[/tex].
Therefore, the correct answer is:
[tex]\[
\boxed{-122}
\][/tex]
Since -122 is not listed among the answer choices (A, B, C, D), let's check the possible typo in the options, but our calculated result is [tex]\(-122\)[/tex].