Answer :
To solve the problem of finding the pressure exerted by the water in the container, we can use the formula for pressure:
[tex]\[ \text{Pressure} = \frac{\text{Force}}{\text{Area}} \][/tex]
Here's a step-by-step breakdown:
1. Identify the given values:
- Total force exerted by the water (Force) = 450 Newtons (N)
- Area of the bottom of the container = 2 square meters (m²)
2. Apply the pressure formula:
- [tex]\[ \text{Pressure} = \frac{450 \, \text{N}}{2 \, \text{m}^2} \][/tex]
3. Calculate the pressure in N/m²:
- [tex]\[ \text{Pressure} = 225 \, \text{N/m}^2 \][/tex]
4. Convert the pressure from N/m² to kilopascals (kPa):
- 1 kPa = 1000 N/m²
- [tex]\[ \text{Pressure in kPa} = \frac{225 \, \text{N/m}^2}{1000} = 0.225 \, \text{kPa} \][/tex]
Therefore, the pressure exerted by the water is 0.225 kPa. This corresponds to option D in the question.
[tex]\[ \text{Pressure} = \frac{\text{Force}}{\text{Area}} \][/tex]
Here's a step-by-step breakdown:
1. Identify the given values:
- Total force exerted by the water (Force) = 450 Newtons (N)
- Area of the bottom of the container = 2 square meters (m²)
2. Apply the pressure formula:
- [tex]\[ \text{Pressure} = \frac{450 \, \text{N}}{2 \, \text{m}^2} \][/tex]
3. Calculate the pressure in N/m²:
- [tex]\[ \text{Pressure} = 225 \, \text{N/m}^2 \][/tex]
4. Convert the pressure from N/m² to kilopascals (kPa):
- 1 kPa = 1000 N/m²
- [tex]\[ \text{Pressure in kPa} = \frac{225 \, \text{N/m}^2}{1000} = 0.225 \, \text{kPa} \][/tex]
Therefore, the pressure exerted by the water is 0.225 kPa. This corresponds to option D in the question.